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containers are assumed to be thermally isolated from their surroundings.
For the initial state, the ideal gas law implies that

piV0 = RTi, (14.26)

and for the final state that

Fig. 14.4 The Joule expansion between
volume V0 and volume 2V0. One mole
of ideal gas (pressure pi, temperature
Ti) is confined to the left-hand side of
a container in a volume V0. The con-
tainer is thermally isolated from its sur-
roundings. The tap between the two
parts of the container is then suddenly
opened and the gas fills the entire con-
tainer of volume 2V0 (and has new tem-
perature Tf and pressure pf).

pf(2V0) = RTf . (14.27)

Since the system is thermally isolated from its surroundings, ∆U = 0.
Also, since U is only a function of T for an ideal gas, ∆T = 0 and hence
Ti = Tf . This implies that piV0 = pf(2V0), so that the pressure halves,
i.e.,

pf =
pi

2
. (14.28)

It is hard to calculate directly the change of entropy of a gas in a
Joule expansion along the route that it takes from its initial state to
the final state. The pressure and volume of the system are undefined
during the process immediately after the partition is removed since the
gas is in a non-equilibrium state. However, entropy is a function of state
and therefore for the purposes of the calculation, we can take another
route from the initial state to the final state since changes of functions
of state are independent of the route taken. Let us calculate the change
in entropy for a reversible isothermal expansion of the gas from volume
V0 to volume 2V0 (as indicated in Fig. 14.5). Since the internal energy is
constant in the isothermal expansion of an ideal gas, dU = 0, and hence
the new form of the first law in eqn 14.18 gives us T dS = p dV , so that

∆S =

∫ f

i
dS =

∫ 2V0

V0

p dV

T
=

∫ 2V0

V0

R dV

V
= R ln 2. (14.29)

Since S is a function of state, this increase in entropy R ln 2 is also the
change of entropy for the Joule expansion.

Fig. 14.5 The Joule expansion between
volume V0 and volume 2V0 and a re-
versible isothermal expansion of a gas
between the same volumes. The path in
the p–V plane for the Joule expansion
is undefined, whereas it is well defined
for the reversible isothermal expansion.
In each case however, the start and end
points are well defined. Since entropy
is a function of state, the change in en-
tropy for the two processes is the same,
regardless of route.

Example 14.3

What is the change of entropy in the gas, surroundings, and Universe
during a Joule expansion?
Solution:
Above, we have worked out ∆Sgas for the reversible isothermal expansion
and the Joule expansion: they have to be the same. What about the
surroundings and the Universe in each case?

For the reversible isothermal expansion of the gas, we deduce the
change of entropy in the surroundings so that the entropy in the Universe
does not increase (because we are dealing with a reversible situation).

∆Sgas = R ln 2,

∆Ssurroundings = −R ln 2,

∆SUniverse = ∆Sgas + ∆Ssurroundings = 0. (14.30)

The expansion  
is a highly non-equilibrium process. 

During the expansion no heat  
enters the system. Thus the  

energy initial equals the final energy





(see slide on next page)



Calculating the change in entropy: thermodynamic considerations
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