
Particle in a Box

We will now explore the quantum mechanical "particle
in the Box"

.
This will justify a result I quoted earlier
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that the sum over states becomes an integral over

classical phase space

The Energy Levels and eigenfunctions are :
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The wave functions are

4 = sin(P-x) These are shown

below
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The partice in box wavefons

For example : the wavelength
of the n = 3 mode (state)6 is = =

3 so :
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· The quantum number a counts how many half-wavelengths
fit in the box .

For a typical box L-Im and typical
atom

.
~1-10m

,
R is huge ,

n - 100 !

· So n (which labels the momentum Pr # An/L) is

practically continuous except at low temperatures of boxes
/

of order an atomic length .
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Now the partition function can't be evaluated in

closed form lat this level) . But
,

we know that n is

nearly continuous and very large -

We can replace
the sum with an integral .
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n ~ 100
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Then instead of integrating

over the momentum magnitude
p

= 0..., we integrate over the

momentum itsself
, p

= -D...

inserting a factor of 2
.

So we see that for >1
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So then the quantum treatment just reproduces the

classical result in this limit :

approximately
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The approximation is good when n)) 1
. This means
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the numerical factor S/ is irrelevant when making

an estimate or posing a condition
. If L/X is large ,

so is (KT,
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Summary
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classical approx

At small temperatures we can approximate I by just

including the first two terms in the sum
.
At high I

the classical approximation is good . Then we compute :

↓ = (2) = - 22

2

This is shown below with the low and high T limits :
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More Dimensions

The classical approximation [-> (dxdYp/h works

State
in more dimensions

In 3D the PIB energy
levels are
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with nx=1 ,
. ..

00 and similary for my and nz .

For each

direction we define a momentum component :

Prx
= hi . nx

= magnitude of momentum in the

I X direction
,
with similar notation

in y and I directions
.

The sum over states is
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