
Chapter 1

Kinetics

1.1 Big numbers and probability

1.1.1 Big numbers

Take a number like Avogadro’s number, NA = 6 × 1023. The number of rearrangements is of Avogadro’s
number NA! is exponentially big, meaning the logarithm is also big. We proved the Stirling approximation1

log(N !) ' N logN −N (1.1)

The Stirling approximation can also be written

log(N !) ' N log(N/e) or N ! '
(
N

e

)N
(1.2)

Given N objects, the number off ways I can choose r1 objects for group 1, and the remaining r2 objects
in group 2 (with r2 + r2 = N) is given by the “binomial” coefficients 2

NCr1r2 =
N !

r1!r2!
(1.5)

You should be able to explain this formula. This generalizes – if I have N objects, and I select r1 objects
into group 1, r2 objects into group 2, and the remaining r3 objects into group three (with r1 + r2 + r3 = N),
the number of ways to do this is given by the “multinomial” coefficient:

NCr1r2r3 =
N !

r1!r2!r3!
(1.6)

You should be able to explain this formula.

1log(x) is the same as ln(x) throughout this course! If we ever need the log base 10 we will write log10(x).
2While we wont need it, the reason why its called the binomial coefficient is because the binomial x+ y raised to a power is

(x+ y)N = (x+ y)(x+ y) . . . (x+ y)︸ ︷︷ ︸
N factors

(1.3)

=

N∑
r1=0

NCr1r2 x
r1yr2 (1.4)

In passing to the second line I have to choose r1 terms out of the N terms in the first line to take x and the remaining r2 terms
will take y. Try it out for N = 2 and N = 3. The multinomial coefficients are similar, and expanding (x+ y + z)N will lead to
a similar expansion involving xr1yr2zr3 .

1



2 CHAPTER 1. KINETICS

1.1.2 Probability

First consider a set of discrete outcomes i = 1 . . . N , each with probability Pi (like a weighted six sided die).
The sum of probabilities is unity ∑

i

Pi = 1 (1.7)

Associated with each outcome is a quantity xi, e.g. x3 the money you get for rolling a three. Then the
mean of x (the mean money you get by rolling the die)

〈x〉 =
∑
i

Pixi (1.8)

For a given quantity x we define the deviation from the average

δx ≡ x− 〈x〉 (1.9)

and the average deviation is zero 〈δx〉 = 0. Then the variance is the mean of the squared deviation〈
δx2
〉

=
〈
(x− 〈x〉)2

〉
=
〈
x2
〉
− 〈x〉2 (1.10)

The standard deviation is
σx =

√
〈x2〉 (1.11)

For continuous variable we need the concept of a probability distribution. The probability, dP, to find
a particle with position in a range between x and x+ dx, which we denote [x, x+ dx], is denoted

dP = P (x)dx , (1.12)

where the probability density P (x) is

P (x) =
dP

dx
. (1.13)

A very important probability density is the Gaussian or “normal” distribution which you should try to
memorize:

P (x) =
1√

2πσ2
e−x

2/2σ2

(1.14)

It is also called the Bell shaped curve and you should be able to sketch it. In class and in homework we
showed: ∫ ∞

−∞
P (x)dx =1 (1.15)

And worked out a number of integrals

〈xn〉 =

∫ ∞
−∞

P (x)xndx = σnCn (1.16)

The numbers are C0 = 1, C2 = 1, C4 = 3 with odd moments, such as 〈x〉, being zero.

1.1.3 Independence and the central limit theorem

Consider a two dimensional probability distribution

dPx,y = P (x, y)dxdy (1.17)

This is the probability of x in [x, x+ dx] and y in [y, y + dy].
We say that x and y are independent if P (x, y) = P (x)P (y) factorizes so that the probability of finding

x and y (in interval dxdy) is probability of x (in interval dx) times the probability of in y (in interval dy)

dPx,y = P (x)dx× P (y)dy (1.18)
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The constants can be arranged so that P (x) and P (y) are separately normalized, e.g.∫
P (x)dx = 1 and

∫
P (y)dy = 1 (1.19)

When the distributions are independent
〈xy〉 = 〈x〉 〈y〉 (1.20)

For definiteness, consider a sequence of random steps in position x. Assume x1, the step in position from
step number one, is drawn from the probability distribution P (x). Also assume second step x2 is drawn
from the same distribution, and that the choice of x2 is no way dependent on x1. Similarly, the third step
x3 is drawn from P (x) and is no way dependent on x1 or x2; and so on for x4, x5, x6 . . .. Then we want to
know what is the mean, variance, and probability distribution of the sum

Y = x1 + x2 + . . .+ xN (1.21)

The answer is for the mean and variance are

〈Y 〉 =N 〈x〉 (1.22)〈
δY 2

〉
=N

〈
δx2
〉

(1.23)

In general the probability of Y depends on P (x), and nothing much can be said about P (Y ). However, if
N is large N � 1, then, remarkably, the probability of Y takes on a universal form of a Normal distribution

P (Y ) =
1√

2πσ2
Y

exp
[
−(Y − 〈Y 〉)2/2σ2

Y

]
(1.24)

with σY =
√
〈δY 2〉. We did not go over the proof, and it is enough at this level to just accept it as a

statement of fact

1.2 Estimates of ideal gasses and the equipartition theorem

The pressure of an ideal gas satisfies
pV = nmlRT (1.25)

Here nml is the number of moles, which is the number of particles N in units of Avogadro’s number,
nml ≡ N/NA. The symbol n ≡ N/V is reserved for the number of particles per volume:

n ≡ N
V is NOT nml ≡ N

NA
. (1.26)

We will work with the number of particles N instead of nml and define Boltzmann’s constant kB

pV = NkBT kB ≡
R

NA
(1.27)

Sometimes we will drop the “B” and just write kT for kBT .
Numerically

R = 8.32 J/◦K kB =
1
40eV

300◦K
(1.28)

The reason for writing kB like this is because this is how people (including me) remember it: e.g. typical
thermal energy, ∼ kBT , is “one fortieth of electron volt at room temperature”, T ' 300◦K.

The typical value of pressure is 1 bar = 105N/m2 ' 1 atm, a typical volume is a liter, 1 L = (10cm)3 =
1000 cm3 = 10−3m3. We note

(1 bar) (1 L) = 100 J (1.29)

Standard Temperature and Pressure (STP) is one bar at 273◦K (freezing). The volume of one mole of gas
at STP is 22 L. Keep in mind that under STP N(particles), V(volume), and U(total energy) are Extensive
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which mean they will grow with the system size. While T(temperature) and P(pressure) are Intensive and
are constant throughout.

The equi-partition theorem states that mean energy per “degree of freedom (dof)” in the gas is 1
2kT . We

will explain what we mean here by dof using examples. Take a mono-atomic gas. Each an atom which can
move in three ways – in the x, the y, and the z directions. Thus the number of dof is 3N where N is the
number of atoms in the gas. So the total mean total energy in the energy in the gas, which we call U or E
(they are the same in our notation), is

U ≡ E =
3

2
NkT (1.30)

The energy (or Hamiltonian) of each particle, which we typically call ε, is a sum of three quadratic forms

ε =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z =
1

2
m~v2 (1.31)

Technically, the equipartition theorem says that the mean energy of each independent subsystem (i.e. a
single particle) is 1

2kBT per quadratic form in the classical Hamiltonian – there are three forms counting the
v2
x, v2

y and v2
z terms. Each quadratic form gives 1

2kBT so〈
1

2
mv2

x

〉
= 1

2kBT (1.32)

and 〈
1

2
m~v2

〉
=

3

2
kBT (1.33)

The root means square velocity is

vrms =
√
〈~v2〉 =

√
3kBT

m
(1.34)

and is typically a couple of hundred meters a second, i.e. close to the speed of sound cs ' 330 m/s.
For a classical diatomic gas there are five degrees of freedom (quadratic forms) per molecule, since the

diatomic molecule can also rotate around the x and y axis. One must include the translational and rotational
kinetic energy

ε =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z +
1

2
Iω2

x +
1

2
Iω2

y (1.35)

We note that instead of working with the velocity and angular velocity we will increasingly work with the
momentum px = mvx and the angular momentum Lx = Iωx,

ε =
p2
x

2m
+

p2
y

2m
+

p2
z

2m
+
L2
x

2I
+
L2
y

2I
(1.36)

=
~p2

2m
+
~L2

2I
(1.37)

The average of each of these five quadratic forms is 1
2kBT so the mean energy per particle is

U

N
=

5

2
kBT (1.38)

The formulas in this section can be used to make a variety of estimates such as: the spacing between
particles at room temperature; the typical speed; the typical de Broglie wavelength; typical angular velocity
and angular momentum. We defined the thermal de Broglie wavelength:

λth =
h√

2πmkBT
(1.39)

We note that λth ∼ h/mvrms. The factor of
√

2π here is purely a matter of convention.
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1.3 The Boltzmann factor

A system has total energy U . If a subsystem within the system has energy ε, the rest of the system has energy
U − ε. The subsystem should be small and independent of the rest of the system (except in regard to energy
exchange), e.g. a molecule in an ideal gas. Probability the subsystem will have energy ε is proportional to
e−ε/kBT

P (ε) ∝ e−ε/kBT (1.40)

This is the Boltzmann factor. We can simplify β = kBT such as to not have to write so much. If you have a
set of microscopically small states i = 1...N , the sum of all of these probabilities is 1, as shown below. Since
P (ε) = Ce−βε we have ∑

i

Ce−βεi = 1 , (1.41)

which determines the constant C which we call 1/Z

C =
1

Z
with Z ≡

∑
i

e−βεi (1.42)

Z is known as the partition function and is important in what follows. Then the probability of finding the
subsystem in state r with energy εr is the following

P (ε) =
e−ε/kBT

Z
(1.43)

The partition function is a function of the temperature, Z(β). The derivative of Z with respect to (minus)
β determine the mean energy via the formula

〈ε〉 =
1

Z(β)

(
−∂Z
∂β

)
(1.44)

Higher derivatives with respect to minus β determine higher moments of the energy, e.g. to find the second
moment

〈
ε2
〉

we have 〈
ε2
〉

=
1

Z(β)

(
− ∂

∂β

)2

Z(β) =
1

Z(β)

∂2Z

∂β2
(1.45)

1.4 The velocity and speed distributions

Consider an ideal gas. Each atom is a subsystem with velocity between vx and vx + dvx, vy and vy + dvy,
and vz and vz + dvz.

dP~v = Ce−mv
2/2kBT dvxdvydvz = P (vx, vy, vz) d3v (1.46)

where C is a normalizing constant and ~v2 = v2
x + v2

y + v2
z . We can determine C from the normalization

condition:

1 =

∫
all ~v

dP~v =

∫
all ~v

Ce−m(v2x+v2y+v2z)/2kBT dvxdvydvz (1.47)

Doing this integral (which factorizes into and integrals over vx, vy and vz) leads to the distribution of
velocities

dP~v =
( m

2πkT

)3/2

e−m~v
2/2kBT dvxdvydvz (1.48)

We note that the probability for the vector ~v factorizes into a probability of vx, times a probability of vy,
times a probability of vz

dP~v = P (vx) dvx P (vy)dvy P (vz)dvz (1.49)

So, the probability of finding a particle with x-component of velocity in [vx, vx + dvx] is after integrating
over vy and vz is

dPvx = P (vx) dvx =
( m

2πkT

)1/2

e−mv
2
x/2kBT dvx (1.50)
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The book calls P (vx), the uninformative name g(vx).
To find the speed distribution we have to add up the probabilities dP~v for all velocities with speed

between v and v + dv. This is a spherical shell of width dv (see lecture)

dPv =

∫
~v in shell

dP~v (1.51)

=
( m

2πkT

)3/2

e−mv
2/2kBT 4πv2 dv ≡ P (v) dv (1.52)

Explicitly the probability density for speed v is

P (v) =
( m

2πkT

)3/2

e−mv
2/2kBT 4πv2 (1.53)

The book calls P (v), the uninformative name f(v).

1.5 Change of variables and solid angles

1.5.1 Change of variables in 1d

Given a variable x and its probability distribution

dPx = P (x) dx (1.54)

How do we find the probability of u, given a map ϕ : x → u, i.e. when u(x) is a function of x? Assuming
that that the map is one to one we have

dPu = P (x(u))

∣∣∣∣dxdu
∣∣∣∣ du = P (x(u))

du

|dudx |
(1.55)

We note the absolute values here, which reflects the fact that when discussing probability we are asking
whether a particle is in a bin of size du, and the bin size isn’t like positive or negative.

The general formula for change of variables for an unoriented integral (like probability) is 3∫
R

f(x)dx =

∫
Ru

f(x(u))

∣∣∣∣dxdu
∣∣∣∣ du (1.56)

Here R is the region of integration for x (for example R could be interval [1, 2]), and Ru is the image of R
under the map (for example if the map is u(x) = −2x then Ru is [−4,−2]).

To set yourself straight of this notation just make the change of variables in a simple integral, getting
the signs right. For example, consider the basic integral:

I =

∫ 2

1

dx =

∫
[1,2]

dx =
1

2
(1.57)

Undergoing a change of variables with u = −2x, giving x = −u/2 and dx = − 1
2du, with |dx/du| = 1

2 . The
integral then becomes

I =

∫ −4

−2

(
−1

2

)
du =

∫ −2

−4

1

2
du =

∫
[−4,−2]

1

2
du = 1 (1.58)

1.5.2 Higher dimensions: spherical coordinates and solid angle

In higher-dimensions we have

dP = P (x, y, z) dx dy dz︸ ︷︷ ︸
dV

(1.59)
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Figure 1.1: Spherical coordinates. Use the picture to justify x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ.



8 CHAPTER 1. KINETICS

Spherical Coordinates

Volume and area elements

Figure 1.2: Spherical coordinates. From the figure, justify Eq. (1.60)

where dV is the “volume element”. We will use spherical coordinates x = r sin θ cosφ, y = r sin θ sinφ, and
z = r cos θ (see Fig. 1.1). A bit of geometry shows that the differential area dA and the volume element dV
in spherical coordinates are (see Fig. 1.2)

dA =r2 sin θ dθ dφ (1.60)

dV =dAdr = r2 sin θ dr dθ dφ (1.61)

So in spherical coordinates

dP =P (x, y, z)r2 sin θ dr dθ dφ (1.62)

≡P (r, θ φ)dr dθ dφ (1.63)

For example, if

P (x, y, z) = Ce−(x2+y2+z2)/2σ2

(1.64)

Then
P (r, θ, φ) = Ce−r/2σ

2

r2 sin θ (1.65)

Rather than using geometry, we can use algebra to make the change of variables. The generalization of
Eq. (1.55) is

dPr,θ,φ =P (x, y, z)

∣∣∣∣∣∣∣∣∂(x, y, z)

∂(r, θ, φ)

∣∣∣∣∣∣∣∣drdθdφ = P (r, θ, φ)drdθdφ (1.66)

Here it is understood that x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ are functions of (r, θ, φ) (see
Fig. 1.1). The double bars denote the absolute value, of the determinant of the Jacobian matrix. The
Jacobian matrix (determinant) is defined by the matrix (determinant) of the possible derivatives

∣∣∣∣∂(x, y, z)

∂(r, θ, φ)

∣∣∣∣ =

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣ = r2 sin θ (1.67)

Take a patch of area A on a sphere. The solid angle is defined as4

Ω ≡ A

r2
. (1.68)

3The difference between oriented and unoriented integral is a matter of semantics at this level. If one replaces an integral
by a sum of rectangles, you can sum them up in order from the beginning to the end (an oriented integral), or you can sum
them up in any order provided they are in a specified region (an unoriented integral).

4I have always found the word “angle” here problematic, since it is a two dimensional region were are talking about. Indeed,
the differential solid “angle”, dΩ = sin θdθdφ, is parametrized by two angles, θ and φ
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Flux through the hole

Figure 1.3: In each dt a volume Ah = Avdt cos θ passes through the hole

This analogous to an angle in 1d where θ = s/r. Since the area of a region on the a sphere runs from 0 up
to 4πr2, we have that Ω is in the range 0 . . . 4π. For a small patch of the sphere subtended by dθ and dφ (at
angles θ, φ) we have from the geometry:

dΩ ≡ dA

r2
= sin θdθdφ (1.69)

If a particle’s position is distributed uniformly over the sphere, the probability distribution is

dP =
dA

4πr2
=

dΩ

4π
=

sin θdθdφ

4π
(1.70)

1.6 Pressure and effusion

After a change of variables the probability distribution of velocities (vx, vy, vz) can be written as distribution
particles with the speed v, flying with angles θ and φ:

dPv,θ,φ =
( m

2πkT

)3/2

e−mv
2/2kBT v2 sin θ dvdθdφ (1.71)

=
( m

2πkT

)3/2

e−mv
2/2kBT 4πv2dv

sin θdθdφ

4π
(1.72)

=P (v)dv
dΩ

4π
(1.73)

where we have recalled Eq. (1.53) for the speed distribution. Thus, the probability of v, θ, φ in a specified
range is probability of speed v in a range dv, times a probability of angles which are uniformly distributed
the sphere, i.e. dPΩ/dΩ = 1/4π. The number of particles per volume with speed in [v, v+dv] and angles in
[θ, θ+ dθ] and [φ, φ+ dφ] is given by the probability in Eq. (1.73) multiplied by the the number of particles
per volume n ≡ N/V .

dn = nP (v)dv
dΩ

4π
(1.74)

Consider a hole of area A on the wall of a container containing the gas (see Fig. 1.3). The flux through
the hole is defined as

Φ ≡ 1

A
dNcross

dt
≡ number of particles crossing the hole per area per second (1.75)

From tube geometry in Fig. 1.3, the number of particles flying through the area A in time dt with speed in
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Figure 1.4: Momentum transfer to the wall is

[v, v + dv] and angles in [θ, θ + dθ] and [φ, φ + dφ] is dNcross = dnAh, where Ah is the volume of the tube
and h = vdt cos θ is the height of the tube. Dividing by A and dt we find the differential flux:

dΦ = nP (v)v cos θdv
dΩ

4π
. (1.76)

dΦ is the number of particles passing through the hole per area per second with speed in [v, v + dv] and
angles in [θ, θ + dθ] and [φ, φ+ dφ].

We can integrate the flux dΦ over the velocity and over half of the sphere to find the total flux. Writing
the 4π in the dΩ/4π as 2 · 2π (see homework for motivation), we find:

Φ =

∫
dΦ = n

∫ ∞
0

dvP (v)v

∫ π/2

0

1

2
sin θ cos θdθ

∫ 2π

0

dφ

2π
=

1

4
n 〈v〉 (1.77)

=n

√
kT

2πm
(1.78)

We discussed an application or two of Eq. (1.77)
The pressure exerted by the atoms is found by calculating how many particles bounce of the wall per

area per time, and the momentum the transfer they impart to the wall. A particle striking the wall velocity
vi = (vx, vy), bounces off the wall with velocity vf = (−vx, vy) delivering an impulse (see Fig. 1.4). The
momentum transfer (or impulse) to the wall by the atom is ∆p = 2mvx ı̂ = 2mv cos θ ı̂. (The momentum
transfer to the atom by the wall is ∆p = pf − pi = −2mvx ı̂.) Recall that force is F = ∆p/∆t. The
momentum transfer per area per per time, or force per area, created by the atoms with speed and angles in
the ranges [v, v + dv], [θ, θ + dθ], [φ, φ+ dφ] is

dFx
A

= ∆px dΦ = dΦ (2mv cos θ) (1.79)

Integrating over v, θ, φ as in Eq. (1.77) gives the force per area or pressure. Of course this should give the
ideal gas law p = nkBT . Computing the pressure is a matter of integration

p =
Fx
A

=

∫
dΦ (2mv cos θ) = nkBT (1.80)

Using dΦ the details are similar to Eq. (1.77)

p = 2nm

∫ ∞
0

dvP (v)v2

∫ π/2

0

1

2
sin θ cos2 θdθ

∫ 2π

0

dφ

2π
=

1

3
n
〈
mv2

〉
(1.81)

=nkBT (1.82)

It is satisfying how the molecular theory of gasses reproduces the ideal gas law p = nkBT .



Chapter 2

The first law

2.1 Thermometers

A thermometer measures changes in mechanical properties, or changes in electrical properties, or other
changes in the material at different temperature reference points. Examples include the expansion of mercury
in the iconic mercury thermometer, or the platinum resistance thermometer shown in class. The values of
these material properties are simply labels for the different temperature reference points.

The Boltzmann factor

Pm ∝ e−ε/kBT . (2.1)

has a universal parameter called kBT that we want to measure1. To make this measurement we need a
simple system where the probabilities can be translated into the material properties of the substance. We
used the Boltzmann factor to calculate the pressure of an ideal gas at constant volume. This pressure is
proportional to precisely the kBT parameter appearing in the Boltzmann factor. Thus a mechanical property
of ideal gasses, i.e. their pressure, can be used to measure the kBT parameter. The readouts of all other
thermometers were calibrated against the ideal gas pressure-thermometers2.

2.2 The first law

The change in energy is determine by the heat added to the system d̄Q plus the work done on the system
by you, d̄W :

dU = d̄Q+d̄W (2.2)

The work done by the system on you (or the work you get out) is d̄Wout = −d̄W . So

dU = d̄Q−d̄Wout (2.3)

For a simple homogeneous substance

d̄Wout = p(T, V )dV Wout =

∫ f

i

p(T, V ) dV (2.4)

We put a bar as in d̄W because d̄W is not the change in a function called W . Rather it is a small amount
of work. The amount of work done depends on the path taken (see lecture notes). Similarly d̄Q is an amount
of heat; it is not the change in a function which we call Q. The amount of heat added or removed from the
system depends on the path.

1Later we will see that this parameter is defined as the change in the entropy with respect to energy (∂S/∂E) ≡ 1/T . The
notion of entropy is independent of any particular substance or property.

2Today there are other systems which can provide additional absolute temperature calibrations, but the ideal gas still plays
an important role.

11
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To work with the first law we generally need to specify two functions. The first is the pressure3 p(T, V )
and the second is the energy U(T, V )

P (T, V ) ≡the pressure as a function of temperature and volume (2.5)

U(T, V ) ≡the energy as a function of temperature and volume (2.6)

Often the relation pressure-temperature-volume relation is inverted expressing the volume in terms of tem-
perature and pressure

V (T, P ) ≡ the volume as a function of temperature an pressure (2.7)

2.3 Specific heats

The first law involves heat. The heat inflows are characterized by the specific heat, which is the amount
heat required, d̄Q, per change in temperature dT .

If the volume is held fixed, we have the specific heat at constant volume

CV ≡
(
d̄Q

dT

)
V

(2.8)

The subscript V indicates that the volume is held fixed. If the pressure is held fixed, we have the specific
heat at constant pressure

Cp ≡
(
d̄Q

dT

)
p

(2.9)

Energy and CV :

If the volume is held fixed dV = 0 and d̄W = 0. The change in energy is

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

��*
0

dV (2.10)

and so from the first law, dU = d̄Q, and

CV =

(
∂U

∂T

)
V

(2.11)

For an diatomic gas U = 5
2NkBT , and so

CV =
5

2
NkB diatomic ideal gas (2.12)

The specific heat grows with the number of particles in the system. For this reason we often quote the
specific heat for one mole of substance, C1ml

V . The specific for one mole of an ideal gas diatomic gas is for
instance

C1ml
V =

5

2
NAkB =

5

2
R diatomic ideal gas (2.13)

We will discuss the energy U(T, V ) later. For any ideal gas (e.g. dilute water vapor) the energy takes
the form

U =Ne0(T ) any ideal gas (2.14)

The specific heat takes the form

CV =Ne′0(T ) any ideal gas (2.15)

3In general the pressure and energy are functions the number of particles N , but N is considered to be a constant and is
not notated: p(T, V ) ≡ p(T, V,N)
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Or for one mole of substance

C1ml
V = R

(
1

kB

de0

dT

)
any ideal gas (2.16)

Relating Cp and Cv:

The specific heat at constant pressure Cp is larger than CV , because some of the heat added (per degree
of temperature change) is used by the gas to do work as it gas expands at fixed pressure. By figuring how
much work is done, we will show shortly that for any ideal gas (not just diatomic or monoatomic)

Cp =CV +NkB any ideal gas (2.17)

Or

C1ml
p =C1ml

V +R any ideal gas (2.18)

In general Cp and CV are related. We will show much later using the second law

Cp =CV +
V Tβ2

p

κT
all substances (2.19)

Here βp is the volume expansion coefficient, and κT is the isothermal compressibility – see the next section.
The ratio of specific heats is given a name

γ ≡ Cp
CV

(2.20)

The factor γ is close to unity in practice and often nearly constant. For instance for a diatomic gas where
CV = 5

2NkB , we find using the relation in Eq. (any ideal gas (2.17)), that γ = 7/5.

2.4 The pressure

Generally the pressure is a function of temperature T , volume V , and number N , p(T, V,N). Usually the
dependence on N is not notated, as N is considered to be a fixed constant, i.e. p(T, V ) ≡ p(T, V,N).

The volume per particle is the inverse of the density

vN ≡
V

N
=

1

n
(2.21)

The pressure is intensive. This means that if I consider twice as many particles at the same temperature
and desity the pressure is unchanged.

Since the pressure is intensive, p = p(T, V,N) is only a function of temperature and vN = V/N , and not
V and N separately, p = p(T, vN ). If you prefer, you can parametrize the pressure by the temperature and
density, p = p(T, n). Thus, we have three parametrizations of the same physical quantity4:

p = p(T, V,N) = p(T, vN ) = p(T, n) (2.25)

4We are using a common notation in physics, which mathematicians don’t like. What we are really talking about here is
three separate functions (or maps) which return the same value at corresponding arguments

p = p1(T, V,N) = p2(T, vN ) = p3(T, n) (2.22)

p1 and p2 and p3 describe the same quantity but have different functional forms, since they are functions of different variables.
Take the ideal gas law:

p1(T, V,N) =
NkT

V
p2(T, vN ) =

kT

vN
p3(T, n) = nkT (2.23)

For a mathematician the map or functional form is paramount, and the name of the argument is irrelevant, e.g. :

p3(T, x, y) =
y

x
kT p2(T, x) =

kT

x
p3(T, x) = x kT (2.24)

Mathematicians kind of have point: 1/x and x are not the same function! The physics notation uses the names of the arguments,
p(T, V,N), p(T, vN ), and p(T, n), to distinguish the functions p1, p2, and p3. The physics notation prevents an explosion of
symbols for the same physical quantity, but if confused you should go back to the math notation.
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Using the chain rule, we can relate the volume derivatives of p(T, V,N) to derivatives with respect to the
volume-per-particle or with respect to the density :(

∂p

∂V

)
T,N

=
1

N

(
∂p

∂vN

)
T

and

(
∂p

∂V

)
T,N

= − N

V 2

(
∂p

∂n

)
T

, (2.26)

Thus, the derivative with respect to volume records how the pressure changes with the particle density5:

N

(
∂p

∂V

)
T

=

(
∂p

∂vN

)
T

= −n2

(
∂p

∂n

)
T

(2.27)

Hopefully this is clear enough.

2.4.1 Pressure, Volume, and the Equation of State

Virial Expansion: First consider gasses. At low density, we can make an expansion in the density N/V

p(T, V,N) =
NkT

V

(
1 +B(T )

N

V
+ C(T )

(
N

V

)2

+ . . .

)
(2.28)

At very low density the ideal gas NkT/V is valid, while at higher density there are corrections. The B(T )
is known first virial coefficient. It corrects the ideal gas pressure by an amount of order δp = B(T )kTn2.
This goes like the square of the number of particles, and hence reflects the interactions between them.

Response coefficients: Now consider a general substance. Instead of working with the pressure as a
function of temperature and volume, we will often work with the volume as a function of temperature and
pressure, which contains the same information. The differential in volume is

dV =

(
∂V

∂T

)
p

dT +

(
∂V

∂p

)
T

dp (2.29)

The two derivatives characterize the response of the system. The first one characterizes the expansion of
the system with increase in temperature

βp =
1

V

(
∂V

∂T

)
p

≡ Thermal expansion coefficient (2.30)

The second one characterizes the increase in pressure with decrease in volume

κT =
−1

V

(
∂V

∂p

)
T

≡ Isothermal compressiblity (2.31)

The derivatives of like (∂V/∂T )p are divided by V so that response coefficients, βp and κT , are intensive.
This means that as the number of particles is increased at fixed pressure and temperature, βp and κT are
unchanged. Both (∂V/∂T )p and V (T, p) are proportional to the number of particles, but βp, which is the
ratio of these two quantities, is independent of the total number of particles.

The speed of sound and the compressibility: The first coefficient βp has a clear everyday meaning,
i.e. how much does something expand when heated. The second coefficient κT is inversely related to the
stiffness of the material. The isothermal bulk modulus directly reflects the stiffness

BT = − 1

V

(
∂p

∂V

)
T

=
1

κT
(2.32)

5More explicitly we would write (
∂p

∂V

)
T

≡
(
∂p

∂V

)
T,N
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At constant temperature, an increase in volume dV leads to a drop in pressure determined by κT :

dp = −BT
dV

V
(2.33)

Since sound is a pressure wave, it is not surprising then that κT is related to the speed of sound. The speed
of sound is

cs =

√
γ

κT ρ
(2.34)

where ρ is the mass per unit volume, and γ = Cp/CV is the adiabtic index.

The adiabatic compressibility and sound: The adiabatic compressibility κS is directly related to κT .
κS is the decrease in volume with increasing pressure, with no heat flow6:

κS = − 1

V

(
∂V

∂p

)
adiab

(2.35)

Similarly there is an adiabatic bulk modulus

BS = −V
(
∂p

∂V

)
adiab

=
1

κS
(2.36)

We will show much later in the course that for any homogeneous substance

κS =
κT
γ

(2.37)

and so the speed of sound is naturally expressed using the adiabatic compressibility

cs =

√
BS
ρ

(2.38)

2.5 Energy

The total energy of the substance is U(T, V,N), and usually the N is considered fixed and not notated
U(T, V ) ≡ U(T, V,N).

The energy is U(T, V,N) is extensive. This means that if I consider twice as many particles at the same
temperature and density, the energy is twice as large. The energy per particle is notated eN :

eN ≡
U

N

and is intensive. Like with the pressure, the energy per particle U/N is a function of temperature and the
volume per particle, U/N = eN (T, vN ). If you prefer you may parametrize the energy per particle by the
temperature and density n ≡ N/V , that is U/N = eN (T, n). Summarizing

U(T, V,N) = NeN (T, vN ) = NeN (T, n) (2.39)

At low densities or large volume we can make a Taylor series expansion in powers of the density N/V ,
leading to the following series expansion for eN at low densities:

U(T, V,N) = Ne0(T )

[
1 + C1(T )

N

V
+ . . .

]
(2.40)

6The “S” means at fixed entropy, and as the course progresses we will write

κS ≡ −
1

V

(
∂V

∂p

)
S

.

For an ideal gas, an adiabatic expansion means that pV γ = const (see below), which can be used to prove Eq. (2.37) for the
simple case of an ideal gas. Proving Eq. (2.37) in general requires a more extensive discussion of entropy, covered later in the
course
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The first term, Ne0(T ), is finite in the limit of infinite volume. This is the ideal gas limit. Ne0(T ) represents
the energy of the individual atoms, and hence is proportional to N . The next term in the series represents
the interactions between the particles and is therefore proportional to N2.

For an ideal gas, we neglect the interactions and have:

U(T, V,N) = Ne0(T ) any ideal gas (2.41)

This implies that for an ideal gas7 (
∂U

∂V

)
T

= 0 any ideal gas (2.43)

As discussed above the function e0(T ) determines the specific heat CV for an ideal gas. For a classical
mono-atomic or classical diatomic gas the function e0(T ) is just proportional to T . For instance for a
diatomic gas, where U = 5

2NkBT , then

e0 =
5

2
kBT diatomic ideal gas (2.44)

However, if the gas is not entirely classical, e.g. the quantum mechanical vibrations of dilute H2O vapor, then
e0(T ) will have a non-trivial dependence on T . We will calculate e0(T ) for some cases as the course progresses.

Response: As with the pressure we need to characterize the response

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV (2.45)

The first law allows one to relate these derivatives to the measured specific heats and the response coefficients
βp that we have already defined.

Fixed volume: If the volume is held fixed dV = 0 and d̄W = 0. The change in energy at fixed volume is

dU =

(
∂U

∂T

)
V

dT (2.46)

and so from the first law, dU = d̄Q, and so (
∂U

∂T

)
V

= CV (2.47)

Fixed pressure: Consider a change in temperature and volume at fixed pressure. From the first law

dU = CV dTp +

(
∂U

∂V

)
T

dVp = d̄Qp − pdVp (2.48)

where we have put subscript “p” to remind ourselves that the path taken is at fixed pressure. Dividing by
dTp we see that:

CV +

(
∂U

∂V

)
T

V βp = Cp − pV βp (2.49)

where we have used the definition of Cp ( )and βp Thus the second response coefficient is given by CV and
Cp (

∂U

∂V

)
T

=
Cp − CV
V βp

− p (2.50)

7As is common, we are suppressing the N . More precisely the equation is written:(
∂U

∂V

)
T,N

= 0 . (2.42)
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This relation gives an experimental way to determine (∂U/∂V )T , from the measured specific heats.
For an ideal gas you should be able to show that V βp = NkB/p, and recognize (∂U/∂V )T = 0, to produce

the relation between Cp and CV given in Eq. (any ideal gas (2.17)).

2.6 Isothermal and Adiabatic Expansion for Ideal Gasses and En-
gine Cycles

We will consider and ideal gas with constant specific heat, so U = CV T . Then γ = Cp/CV = 1 +NkB/CV
is also constant.

Isothermal Expansion: For an isothermal expansion of a gas there is no change in temperature due to
influx of heat compensating the expansion. For an ideal gas you should be able to show that

∆U = 0 Q = Wout =

∫ f

i

pdV = NkBT ln(Vf/Vi) (2.51)

Adiabatic Expansion: For an adiabatic expansion Q = 0, and there is a change in temperature as the
system expands.

∆U = −
∫ f

i

pdV (2.52)

You should be able to show that during the expansion

pV γ = const or
pi
pf

=

(
Vf
Vi

)γ
(2.53)

Or, since p = NkBT/V , we have

TV γ−1 = const or
Ti
Tf

=

(
Vf
Vi

)γ−1

(2.54)

Using the fact that U = CV T , one can use Eq. (2.54) to find the change in energy ∆U = CV ∆T .

Engines: In a car engine we burn gasoline. This involves chemical transitions of atomic levels, each of which
provide somewhat less than an electron-volt of energy. Since there are of order an Avogadro’s number of
such transitions we typically get

NA (eV) ' 100 kJ (2.55)

of energy for every mole. The constant NA eV is known as Faraday’s constant. This is a lot of energy which
is why internal combustion engines have taken over.

In a given closed cycle of an engine we have

��
�*0

∆U = Q−Wout (2.56)

The net heatQ involves positive inputs to the engineQin, and exhaustQout which is negative, Qout = −|Qout|.
In total

Q = Qin +Qout = Qin − |Qout|.

The efficiency is

η =
Wout

Qin
= 1− |Qout|

Qin
(2.57)
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Chapter 3

Entropy

3.1 Basic notions

We worked a very particular example to explain the concept of entropy. Specifically we considered N
quantum harmonic oscillators sharing (or partitioning) the q units of energy E = q~ω0 amongst themselves.
(The graphical presentation of this problem is given in the lecture notes.) The total number of ways the
system can partition the available energy is Ω(E) and the entropy is

Ω(E) (3.1)

The system will evolve until all possible partitions of the energy are equally likely. The probability of a
specific partition is

Pm =
1

Ω(E)
(3.2)

If there are six possible outcomes Ω(E) = 6 (like a regular die) then the probability of an outcome is 1/6. Ω
is an exponentially large number and is of order eN . A precise computation done in homework gives Ω = e555

for N = q = 400. The entropy is (up to a constant) the log of the number of partitions

S = kB ln Ω(E) = −kB logPm (3.3)

Thus the entropy is of order ∼ NkB .

19
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Appendix A

Estimates

We came across a number of physical constants that you need to know. Outside of this list, the constants
will be given.

1. Giga = 109, Mega = 106, milli = 10−3 so

1 meV = 10−3 eV 1 MeV = 106 eV 1 GeV = 109 eV (A.1)

2. Avogadro’s number NA = 6× 1023.

3. The speed of light c = 3× 108 m/s.

4. The speed of sound in air is approximately cs ' 330 m/s.

5. A useful unit of volume is liters. One liter is (10 cm)3 = 1000 cm3. One mole of an ideal gas at STP
has a volume of 22 L.

6. A useful unit of pressure is a bar. One atmosphere is approximately 1 bar. 1 bar is 105 N/m
2
. A

typical scale of energy is 1 bar× 1 L = 100 J.

7. The ideal gas constant is R = 8.32 J/◦K:

8. The Boltzmann constant kB you can remember in two ways:

• The macroscopic way: one Avogadro’s number times kB is R:

NAkB = R (A.2)

• The microscopic way: kT is “one fortieth of an eV at room temperature”, T = 300 ◦K.

kB =
1
40 eV

300 ◦K
=

0.025 eV

300 ◦K
(A.3)

9. You should remember the proton (and neutron mass) in two ways:

• The microscopic way: i.e. the rest energy in mega electron volts is

mpc
2 ' 938 MeV ' 1000 MeV ' 1 GeV (A.4)

• The macroscopic way: an Avogadro’s number of protons weighs a gram. This is the molar mass
of the proton:

Mml = mpNA = 1 g (A.5)

21
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Protons and neutrons and weigh nearly the same thus the mass of one Avogadro’s number of diatomic
oxygen weighs 32 g, since there are eight protons and neutrons in one oxygen nucleus, and two such
nuclei. The electrons are light (see below) for the mass budget.

You might want to use either of these methods to evaluate vrms in atomic hydrogen gas at room
temperature

vrms =

√
3kT

mp
= c

√
3kT

mpc2
= (3× 108m/s)×

√
(1/40)eV

938× 106 eV
' 2700 m/s (A.6)

Or if you prefer

vrms =

√
3kBT

m
=

√
3 (NAkB)T

NAmp
=

√
3RT

1g
=

√
3× 8.32 J/◦K× 300◦K

1g
' 2700 m/s (A.7)

This is almost a factor of 10 faster than the speed of sound cs ' 330 m/s, because hydrogen is so light.

10. You should remember the electron mass in two ways:

• The microscopic way: the mass is “half an MeV”

mec
2 ' 0.511 MeV (A.8)

• In comparison to the proton mass:
me

mp
' 1

2000
(A.9)

11. Planck’s constant is needed to convert wavelength to energy

~c = 197 eV nm (A.10)

or using h = 2π~
hc = 1240 eV nm (A.11)

Thus the energy of a photon of yellow light with λ = 550 nm (emitted by sodium) is

E =
hc

λ
=

1240 eV nm

550 nm
' 2.3 eV (A.12)

Planck’s constant is also useful for measuring typical de Broglie wavelength at room temperature

h√
2πmpkT

=
hc√

2π(mpc2)(kT )
' 1240 eVnm√

2π · 109 eV 1
40 eV

' 1.0 Å (A.13)

12. A useful unit of distance in atomic physics is angstroms, 1 Å = 0.1 nm. The Bohr radius

a0 = 0.53 Å (A.14)

is about half an Angstrom. A typical bond length is normally between 1-5 Bohr Radii. (For N2 the
distance between the two nuclei is 1.09 Å)

13. An electron volt is a good unit of microscopic energy. Avogadro’s number times 1 eV is a good unit of
macroscopic chemical energy and is 100 kilo Joules.

NA eV ' 100 kJ (A.15)

This is sometimes called the Faraday constant1. An explosion involves roughly an Avogadro’s num-
ber of atomic transitions, with each atomic transition releasing about an electron volt of energy, for
approximately 100 kJ of energy per mole. Burning a mole of gasoline gives roughly this amount of
energy.

1We can quickly find the charge in Coulombs from this relation,

1eV ' 100 kJ/NA ' 1.6× 10−19J and so 1e = 1.6× 10−19C. (A.16)
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14. The Bohr model provides a lot of estimates of the microscopic world.

In the Bohr model the radius of the lowest electron orbit is a0 = 0.53 Å, and the angular momentum
of the lowest orbit is discrete, L = pa0 = ~. So the momentum is

p =
~
a0

(A.17)

reflecting the uncertainty principle. In the lowest orbit Bohr orbit the kinetic energy is half of the
potential energy in magnitude2. The potential energy is negative reflecting the positive charge +e of
the proton and negative charge −e of the electron. The potential energy of the orbiting electron is

PE = − e2

4πε0a0
(A.18)

The binding energy of the electron to the proton

E =KE + PE (A.19)

=
p2

2m
+

(
− e2

4πε0a0

)
(A.20)

=− 13.6 eV (A.21)

Thus we have for the Hydrogen atom where p = ~/a0 and KE = p2/2m

KE = 1
2 |PE| = |E| (A.22)

~2

2mea2
0

=
1

2

(
e2

4πε0a0

)
' 13.6 eV (A.23)

13.6 eV is the Rydberg constant.

For the ground states of a quantum mechanical system it is generically the case that

KE ∼ |PE| ∼ |E| (A.24)

If the system size is of order L then p ∼ ~/L and the kinetic energy is ~2/2mL2, and often this a
good estimates for |PE| and |E|. So the intuition from the Bohr model is often a good guess for more
general quantum mechanical systems.

These facts give another way to estimate the thermal de Broglie wavelength of a proton at room
temperature, by inserting a0 and the electron mass, and noting that h = 2π~:

λth ≡
(2π~)√
2πmpkT

= 2πa0

√
~2

2mea2
0

(
1

kBT

)√
me

πmp
= 2π (0.5Å)

√
13.6 eV

0.025 eV

√
1

π2000
' 1Å (A.25)

2This follows from Newton’s Law for a circular orbit for an electron attracted to the proton via the Coulomb force:

mv2

r
=

e2

4πε0r2
.

Multiplying this equation by r/2 gives
1

2
mv2 =

1

2

e2

4πε0r
.
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Appendix B

Math

B.1 Rant on units management

Prof. T and most professional physicists care a lot about units. If you have a dimensionful integral you can’t
do, that is bad. If you can turn the integral to something with overall units times a dimensionless integral
(which is a number like

√
2) that isn’t so bad.

Suppose, for example, the integral integral you are trying to compute is an integral over position:

I =

∫ ∞
0

dxx4e−x
2/`2 (B.1)

where ` has units of length. Then I ∝ `5 times a dimensionless number, which turns out to be 0.66467. You
should be able to show the `5 without doing any integrals, by simply switching the integration variable from
the dimensionful variable x to a dimensionless variable u = x/` (the position in units of `). Here are the
steps

I =

∫ ∞
0

dxx4 exp(−x2/`2) (B.2)

=`5
∫ ∞

0

dx

`

x4

`4
exp(−x2/`2) (B.3)

=`5 ×
∫ ∞

0

duu4 exp(−u2) (B.4)

=`5c (B.5)

where c is an order one constant. I think that we can agree that

I = c`5 (B.6)

shows a great deal more insight than Eq. (B.1).

The fact that the proportionality constant is c = Γ(5/2)/2 = 3
√
π/8 ' 0.66467 doesn’t seem so impor-

tant1, and I would be happy with I = c`5 as a result. Finding c requires doing a dimensionless integral,
which is the only kind of integral you should ever try to do!

1This value of c follows by a change of variables, defining y = u2 in Eq. (B.4).

25
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B.2 Basic Taylor Series

You are expected to know what a Taylor series is, but we will develop facility with them as the course
develops. You are expected to have the following memorized:

sin(x) =x− x3

3!
+
x5

5!
+ +O(x7) (B.7)

cos(x) =1− x2

2!
+
x4

4!
+O(x6) (B.8)

ex =1 + x+
1

2!
x2 +O(x3) (B.9)

log(1 + x) =x− 1

2
x2 +

1

3
x3 +O(x4) (B.10)

(1 + x)α =1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 +O(x4) (B.11)

1

1 + x
=1− x+ x2 +O(x3) (B.12)

These get me through life.
They can be integrated, etc, so for example the expression for log(1+x) follows from the geometric series

1/(1 + x) by integration:

log(1 + x) =

∫ x

0

dx′

1 + x′
=

∫ x

0

dx′
[
1− x′ + (x′)2 +O((x′)3)

]
= x− x2

2
+
x3

3
+O(x4) (B.13)

B.3 Gaussian Integrals

We discussed the integrals

In =
1√
2π

∫ ∞
−∞

dx e−x
2/2xn (B.14)

The first couple results are

I0 = 1 I2 = 0 I4 = 3 I6 = 15 (B.15)

We found these using the generating function technique.

B.4 The Gamma function

The gamma function is a useful special function that extends the domain of the factorial function to non-
integer values. It is defined by the integral2

Γ(z) =

∫ ∞
0

xz−1e−xdx (B.17)

and has the familiar recursive relationship

Γ(z + 1) = zΓ(z) (B.18)

starting from Γ(1) = 1. We have

Γ(n) = (n− 1)! (B.19)

2I like to write Γ(z) like this

Γ(z) =

∫ ∞
0

xze−x
dx

x
(B.16)

since the measure dx/x is invariant under a rescaling x′ = λx, i.e. dx/x = dx′/x′. This is one reason why clever math folk
defined Γ(z) with the power z − 1 in Eq. (B.17) instead of just z.
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While the gamma function is defined for all complex numbers except the non-positive integers, analytical
expressions are only known where n is an integer or half-integer. In particular,

Γ

(
1

2

)
=
√
π. (B.20)

So for instance, using the recursion, Γ(3/2) = 1
2Γ( 1

2 ) =
√
π/2.

In statistical mechanics, the gamma function occurs frequently in integrals involving the Maxwell–
Boltzmann distribution. In addition, the area of a sphere in d dimensions is

Ad =
2πd/2

Γ(d/2)
rd−1 . (B.21)

which comes up a lot later in the course.


	Kinetics
	Big numbers and probability
	Big numbers
	Probability
	Independence and the central limit theorem

	Estimates of ideal gasses and the equipartition theorem
	The Boltzmann factor
	The velocity and speed distributions
	Change of variables and solid angles
	Change of variables in 1d
	Higher dimensions: spherical coordinates and solid angle

	Pressure and effusion

	The first law
	Thermometers
	The first law
	Specific heats
	The pressure
	Pressure, Volume, and the Equation of State

	Energy
	Isothermal and Adiabatic Expansion for Ideal Gasses and Engine Cycles

	Entropy
	Basic notions

	Estimates
	Math
	 Rant on units management 
	Basic Taylor Series
	Gaussian Integrals 
	The Gamma function


