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In this chapter we will apply the results of the Boltzmann distribution
(eqn 4.13) to the problem of the motion of molecules in a gas. For
the present, we will neglect any rotational or vibrational motion of the
molecules and consider only translational motion (so these results are
strictly applicable only to a monatomic gas). In this case the energy of
a molecule is given by
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where v = (vx, vy, vz) is the molecular velocity, and v = |v| is the molec-
ular speed. This molecular velocity can be represented in velocity space
(see Fig. 5.1). The aim is to determine the distribution of molecular
velocities and to determine the distribution of molecular speeds. This
we will do in the next two sections. To make some progress, we will

Fig. 5.1 The velocity of a molecule is
shown as a vector in velocity space.

make a couple of assumptions: first, that the molecular size is much less
than the intermolecular separation, so that we assume that molecules
spend most of their time whizzing around and only rarely bumping into
each other; second, we will ignore any intermolecular forces. Molecules
can exchange energy with each other due to collisions, but everything
remains in equilibrium. Each molecule therefore behaves like a small
system connected to a heat reservoir at temperature T , where the heat
reservoir is “all the other molecules in the gas”. Hence the results of the
Boltzmann distribution of energies (described in the previous chapter)
will hold.

5.1 The velocity distribution

To work out the velocity distribution of molecules in a gas, we must
first choose a given direction and see how many molecules have partic-
ular components of velocity along it. We define the velocity distribu-
tion function as the fraction of molecules with velocities in, say, the
x-direction,1 between vx and vx +dvx, as g(vx) dvx. The velocity distri-1But we could choose any direction of

motion we like! bution function is proportional to a Boltzmann factor, namely e to the
power of the relevant energy, in this case 1

2mv2
x, divided by kBT . Hence

g(vx) ∝ e−mv2
x/2kBT . (5.2)
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Probability to have  x-component of velocity

Integrate over   vy, vz
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Probability of speed  v
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This velocity distribution function is sketched in Fig. 5.2. To normal-
ize this function, so that

∫ ∞
−∞ g(vx) dvx = 1, we need to evaluate the

integral2 2The integral may be evaluated using
eqn C.3.
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so that

g(vx) =
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m

2πkBT
e−mv2

x/2kBT . (5.4)

It is then possible to find the following expected values of this distribu-

Fig. 5.2 g(vx), the distribution func-
tion for a particular component of
molecular velocity (which is a Gaussian
distribution).

tion (using the integrals in Appendix C.2):

〈vx〉 =

∫ ∞

−∞
vxg(vx) dvx = 0, (5.5)

〈|vx|〉 = 2

∫ ∞

0
vxg(vx) dvx =

√

2kBT

πm
, (5.6)

〈v2
x〉 =

∫ ∞

−∞
v2

xg(vx) dvx =
kBT

m
. (5.7)

Of course, it does not matter which component of the velocity was ini-
tially chosen. Identical results would have been obtained for vy and vz.
Hence the fraction of molecules with velocities between (vx, vy, vz) and
(vx + dvx, vy + dvy, vz + dvz) is given by

g(vx)dvx g(vy)dvy g(vz)dvz

∝ e−mv2
x/2kBT dvx e−mv2

y/2kBT dvy e−mv2
z/2kBT dvz

= e−mv2/2kBT dvx dvy dvz. (5.8)

Fig. 5.3 Molecules with speeds be-
tween v and v + dv occupy a volume
of velocity space inside a spherical shell
of radius v and thickness dv. (An oc-
tant of this sphere is shown cut-away.)

5.2 The speed distribution

We now wish to turn to the problem of working out the distribution of
molecular speeds in a gas. We want the fraction of molecules which are
travelling with speeds between v = |v| and v + dv, and this corresponds
to a spherical shell in velocity space of radius v and thickness dv (see
Fig. 5.3). The volume of velocity space corresponding to speeds between
v and v + dv is therefore equal to

4πv2 dv, (5.9)

so that the fraction of molecules with speeds between v and v + dv can
be defined as f(v) dv, where f(v) is given by

f(v) dv ∝ v2 dv e−mv2/2kBT . (5.10)

In this expression the 4π factor has been absorbed in the proportionality
sign.

5.2 The speed distribution 49

This velocity distribution function is sketched in Fig. 5.2. To normal-
ize this function, so that

∫ ∞
−∞ g(vx) dvx = 1, we need to evaluate the

integral2 2The integral may be evaluated using
eqn C.3.

∫ ∞

−∞
e−mv2

x/2kBT dvx =

√

π

m/2kBT
=

√

2πkBT

m
, (5.3)

so that

g(vx) =

√

m

2πkBT
e−mv2

x/2kBT . (5.4)

It is then possible to find the following expected values of this distribu-

Fig. 5.2 g(vx), the distribution func-
tion for a particular component of
molecular velocity (which is a Gaussian
distribution).

tion (using the integrals in Appendix C.2):

〈vx〉 =

∫ ∞

−∞
vxg(vx) dvx = 0, (5.5)

〈|vx|〉 = 2

∫ ∞

0
vxg(vx) dvx =

√

2kBT

πm
, (5.6)

〈v2
x〉 =

∫ ∞

−∞
v2

xg(vx) dvx =
kBT

m
. (5.7)

Of course, it does not matter which component of the velocity was ini-
tially chosen. Identical results would have been obtained for vy and vz.
Hence the fraction of molecules with velocities between (vx, vy, vz) and
(vx + dvx, vy + dvy, vz + dvz) is given by

g(vx)dvx g(vy)dvy g(vz)dvz

∝ e−mv2
x/2kBT dvx e−mv2

y/2kBT dvy e−mv2
z/2kBT dvz

= e−mv2/2kBT dvx dvy dvz. (5.8)

Fig. 5.3 Molecules with speeds be-
tween v and v + dv occupy a volume
of velocity space inside a spherical shell
of radius v and thickness dv. (An oc-
tant of this sphere is shown cut-away.)

5.2 The speed distribution

We now wish to turn to the problem of working out the distribution of
molecular speeds in a gas. We want the fraction of molecules which are
travelling with speeds between v = |v| and v + dv, and this corresponds
to a spherical shell in velocity space of radius v and thickness dv (see
Fig. 5.3). The volume of velocity space corresponding to speeds between
v and v + dv is therefore equal to

4πv2 dv, (5.9)

so that the fraction of molecules with speeds between v and v + dv can
be defined as f(v) dv, where f(v) is given by

f(v) dv ∝ v2 dv e−mv2/2kBT . (5.10)

In this expression the 4π factor has been absorbed in the proportionality
sign.

The speed distribution 8



The speed distribution 9



The speed distribution 10



The speed distribution 11

See the next page for how these things are related



More things to compute — in homework :)

50 The Maxwell–Boltzmann distribution

To normalize3 this function, so that
∫ ∞
0 f(v) dv = 1, we must evaluate3We integrate between 0 and ∞, not

between −∞ and ∞, because the speed
v = |v| is a positive quantity.

the integral (using eqn C.3)

∫ ∞

0
v2e−mv2/2kBT dv =

1

4

√

π

(m/2kBT )3
, (5.11)

so that

f(v) dv =
4√
π

(

m

2kBT

)3/2

v2 dv e−mv2/2kBT . (5.12)

This speed distribution function is known as the Maxwell–Boltzmann
speed distribution, or sometimes simply as a Maxwellian distribu-
tion and is plotted in Fig. 5.4. Having derived the Maxwell–Boltzmann
distribution function (eqn 5.10) we are now in a position to derive some
of its properties.

Fig. 5.4 f(v), the distribution func-
tion for molecular speeds (Maxwell–
Boltzmann distribution).

5.2.1 〈v〉 and 〈v2〉
It is straightforward to find the following expected values of the Maxwell–
Boltzmann distribution using standard integrals:

〈v〉 =

∫ ∞

0
vf(v) dv =

√

8kBT

πm
, (5.13)

〈v2〉 =

∫ ∞

0
v2f(v) dv =

3kBT

m
. (5.14)

Note that using eqns 5.7 and 5.14 we can write

〈v2
x〉 + 〈v2

y〉 + 〈v2
z〉 =

kBT

m
+

kBT

m
+

kBT

m
=

3kBT

m
= 〈v2〉 (5.15)

as expected.
Note also that the root mean squared speed of a molecule

vrms =
√

〈v2〉 =

√

3kBT

m
(5.16)

is proportional to m−1/2.

5.2.2 The mean kinetic energy of a gas molecule

The mean kinetic energy of a gas molecule is given by

〈EKE〉 =
1

2
m〈v2〉 =

3

2
kBT. (5.17)

This is an important result, and we will later derive it again by a different
route (see Section 19.2.1). It demonstrates that the average energy of a
molecule in a gas depends only on temperature.

You can find   (the most probable speed) 

by differentiation  

vmax
dP(v)/dv = 0



Measuring the velocity distribution (see book for details)

5.3 Experimental justification 51

5.2.3 The maximum of f(v)

The maximum value of f(v) is found by setting

df

dv
= 0, (5.18)

and straightforward differentiation of eqn 5.10 yields

vmax =

√

2kBT

m
. (5.19)

Since
√

2 <

√

8

π
<

√
3, (5.20)

we have that
vmax < 〈v〉 < vrms (5.21)

and hence the points marked on Fig. 5.4 are in the order drawn. The
mean speed of the Maxwell–Boltzmann distribution is higher than the
value of the speed corresponding to the maximum in the distribution
since the shape of f(v) is such that the tail to the right is very long.

Example 5.1

Calculate the rms speed of a nitrogen (N2) molecule at room tempera-
ture. [One mole of N2 has a mass of 28 g.]
Solution:
For nitrogen at room temperature, m = (0.028 kg)/(6.022 × 1023) and
so vrms ≈ 500 m s−1. This is about 1100 miles per hour, and is the same
order of magnitude as the speed of sound.

5.3 Experimental justification

Fig. 5.5 The experimental appara-
tus that can be used to measure the
Maxwell–Boltzmann distribution.

How do you demonstrate that the velocity distribution in a gas obeys the
Maxwell–Boltzmann distribution? A possible experimental apparatus is
shown in Fig. 5.5. This consists of an oven, a velocity selector, and a
detector, which are mounted on an optical bench. Hot gas atoms emerge
from the oven and pass through a collimating slit. Velocity selection of
molecules is achieved using discs with slits cut into them, which are
rotated at high angular speed by a motor. A phase shifter varies the
phase of the voltage fed to the motor for one disc relative to that of
the other, so that the angle between the slits on the two discs can be
continuously adjusted. Thus only molecules travelling with a particular
speed from the oven will pass through the slits in both discs. A beam
of light can be used to determine when the velocity selector is set for
zero transit time. This beam is produced by a small light source near

52 The Maxwell–Boltzmann distribution

one disc and passes through the velocity selector and is detected by a
photocell near the other disc.

Another way of selecting the velocity is shown in Fig. 5.6. This consists
of a solid surface on whose surface is cut a helical slot, and which is
capable of rotation around the cylinder’s axis at a rate ω. A molecule
of velocity v which goes through the slot without changing its position
relative to the sides of the slot will satisfy the equation

Fig. 5.6 Diagram of the velocity selec-
tor. (After R.C. Miller and P. Kusch,
Phys. Rev. 99, 1314 (1955).) copy-
right (1955) by the American Physical
Society.

v =
ωL

φ
, (5.22)

in which φ and L are the fixed angle and length shown in Fig. 5.6.
Tuning ω allows you to tune the selected velocity v.

Fig. 5.7 Intensity data measured for
potassium atoms using the velocity se-
lector shown in Fig. 5.6 (from R.C.
Miller and P. Kusch, Phys. Rev. 99,
1314 (1955), Copyright (1955) by the
American Physical Society). The line
shows the best fit to an expression of
the form v4e−mv2/2kBT (see text).

Data from this experiment are shown in Fig. 5.7. In fact, the intensity
as a function of velocity v does not follow the expected v2e−mv2/2kBT

distribution but instead fits to v4e−mv2/2kBT . What has gone wrong?
Nothing has gone wrong, but there are two factors of v that must

be included for two different reasons. One factor of v comes from the
fact that the gas atoms emerging through the small aperture in the wall
of the oven are not completely representative of the atoms inside the
oven. This effect will be analysed in Chapter 7. The other factor of v
comes from the fact that as the velocity selector is spun faster, it accepts
a smaller fraction of molecules. This can be understood in detail as
follows. Because of the finite width of the slit, the velocity selector selects
molecules with a range of velocities. The limiting velocities correspond
to molecules that enter the slot at one wall and leave the slot at the
opposite wall. This leads to velocities that range all the way from ωL/φ−
to ωL/φ+, where φ± = φ ± l/r and l and r are as defined in Fig. 5.6.
Thus the range, ∆v, of velocities transmitted is given by

∆v = ωL

(

1

φ−
− 1

φ+

)

≈ 2l

φr
v, (5.23)

Velocity selector: A turning drum with a slot

If the speed is  then the molecule  
gets through the slot.  

v = ωL/ϕ
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Can be used to fit  !kB


