




Maxwell Relations

Energy,  E(S, V)

Enthalpy,   H(S, p)

Free Energy,  F(T, V)

Gibbs Free Energy  G(T, P)

180 Thermodynamic potentials

We can now apply this idea to each of the state variables U , H, F ,
and G in turn.

Example 16.3

The Maxwell relation based on G can be derived as follows. We write
down an expression for dG:

dG = −SdT + V dp. (16.44)
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and hence we can write S = −(∂G/∂T )p and V = (∂G/∂p)T . Because
dG is an exact differential, we have
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and hence we have the following Maxwell relation:
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This reasoning can be applied to each of the thermodynamic potentials
U , H, F , and G to yield the four Maxwell’s relations:

Maxwell’s relations:
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We have said that Maxwell’s relations relate a partial differential that
corresponds to something that can be easily measured to a partial dif-
ferential that cannot. For example, in eqn 16.51 the term (∂V/∂T )p on
the right-hand side tells you how the volume changes as you increase the
temperature while keeping the pressure fixed. This is related to a quan-
tity called the isobaric expansivity13 and is a quantity you can easily13See eqn 16.66.

imagine being something one could measure in a laboratory. However,
the term on the left-hand side of eqn 16.51, (∂S/∂p)T , is much more






