Maxwell Relations
• Take a function
$$F(x,y)$$

 $dF = (\frac{\partial F}{\partial x}, \frac{dx}{dy} + (\frac{\partial F}{\partial y}) \frac{dy}{dy}$
Now we have
 $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$
• Let's see what this means:
 $dE = dS + dW$
 $dE = TdS - pdV$, or
 $T = (\frac{\partial E}{\partial S})_V - P = (\frac{\partial E}{\partial V})_S$
Of course
 $(\frac{\partial F}{\partial V})(\frac{\partial E}{\partial S})_V = (\frac{\partial F}{\partial S})_V (\frac{\partial E}{\partial V}) = \frac{\partial^2 E}{\partial S \partial V}$
• So we see our first Maxwell relation:
 $(\frac{\partial T}{\partial V})_S = -(\frac{\partial P}{\partial S})_V$

• Similarly, take for example

$$G = E - TS + (pV)$$

$$dG = -S dT + V dp$$
So we find from $\partial^2 G / 3T \partial p = \partial^2 G / 3p \partial T$ that

$$\begin{pmatrix} \partial V \\ \partial T \end{pmatrix}_p = -\begin{pmatrix} \partial S \\ \partial P \end{pmatrix}_T$$
All of the Maxwell relations are summarized on the next slide
A The importance of these seemingly mathematical
results is that it relates a number of
quantities (such as $\partial S / \partial p$) to measurables
• Recall for $V(T, P)$ we have:

$$dV = \begin{pmatrix} \partial V \\ \partial T \end{pmatrix}_p \quad dT + \begin{pmatrix} \partial V \\ \partial P \end{pmatrix}_T$$

$$dV = \begin{pmatrix} \partial V \\ \partial T \end{pmatrix}_p \quad V \begin{pmatrix} \partial P \\ \partial P \end{pmatrix}_T$$

$$= \begin{pmatrix} \partial_F dT - K_T dP \\ V & V \end{pmatrix} \begin{pmatrix} \partial P \\ \partial T \end{pmatrix}_P \quad V \begin{pmatrix} \partial P \\ \partial P \end{pmatrix}_T$$
Usume expansion K_T determined by
coefficient of material is speed of sound
 $\sigma \partial V / \partial T$

Maxwell Relations

$$\begin{pmatrix} \frac{\partial T}{\partial V} \end{pmatrix}_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V} \\ \left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p} \\ \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \\ \left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p} \end{cases}$$

Energy, E(S, V)

Enthalpy, H(S, p)

Free Energy, F(T, V)

Gibbs Free Energy G(T, P)

• Thus for example

$$\begin{pmatrix}
(35) \\
(5p)_T
\end{pmatrix} = \beta_p \\
\begin{pmatrix}
(35) \\
(5p)_T
\end{pmatrix} = \beta_p \\
how much the material expands
\\
naiwely inder heating. Easy
hard to measure to understand
\\
Knowing β_p , k_T as well as C_p and C_V
is enough to find everything!
Examples: Worm ups/Defs • Pressure • Courd Cy
is enough to find everything!
Examples: Worm ups/Defs • Pressure • Courd Cy
 $\delta_T = (2V) dT + (2V) dp$
 $dV = (2V) dT + (2V) dp$
 $dV = (2V) dT + 1 dV$
 $\delta_T = (2V) dT + 1 dV$$$

• More mathematically we have since
$$dp = \frac{\beta p}{\beta r} \frac{dT + \beta p}{dT + \beta p} \frac{dV}{\beta r}$$

 $\begin{pmatrix} \partial p \\ \partial r \end{pmatrix} = - \begin{pmatrix} \partial V/\partial T \end{pmatrix} p = \frac{\beta p}{\beta r}$
 $\begin{pmatrix} \partial p \\ \partial r \end{pmatrix} = \frac{1}{2} = \frac{1}{2}$
 $\begin{pmatrix} \partial r \\ \partial r \end{pmatrix} r$
• This is a relation of a mathematical
nature. For any three Variables constrained
by a function (Blutdell Appendix C)
 $f(x, y, z) = 0$
we can solve for one in terms of the other two
leading to e.g.
 $\begin{pmatrix} \partial x \\ \partial y \end{pmatrix}_{z} = -\begin{pmatrix} \partial x \\ \partial y \end{pmatrix}_{z} \begin{pmatrix} \partial y \\ \partial z \end{pmatrix}_{x}$
 $\begin{pmatrix} \partial x \\ \partial y \end{pmatrix}_{z} \begin{pmatrix} \partial y \\ \partial z \end{pmatrix}_{x}$
 $\begin{pmatrix} \partial x \\ \partial z \end{pmatrix}_{y} = -\begin{pmatrix} \partial x \\ \partial y \end{pmatrix}_{z} \begin{pmatrix} \partial y \\ \partial z \end{pmatrix}_{x}$
 $dQ' = T dS$
• So at constant Volume or pressure !
 $dQ_{y} = T dS_{y}$ and $dQ_{p} = T dS_{p}$
So dividing by dT we have, since $C = \frac{dQ}{dT}$