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temperatures are the same on each side, and since p = (N/V )kBT , the
number of molecules of gas 1 is xN and of gas 2 is (1 − x)N , where N
is the total number of molecules.

If the tap on the pipe connecting the two vessels is opened, the gases
will spontaneously mix, resulting in an increase in entropy, known as the
entropy of mixing. As for the Joule expansion, we can imagine going
from the starting state (gas 1 in the first vessel, gas 2 in the second vessel)
to the final state (a homogeneous mixture of gas 1 and gas 2 distributed
throughout both vessels) via a reversible route, so that we imagine a
reversible expansion of gas 1 from xV into the combined volume V and
a reversible expansion of gas 2 from (1−x)V into the combined volume V .
For an isothermal expansion of an ideal gas, the internal energy doesn’t
change and hence T dS = p dV so that dS = (p/T ) dV = NkB dV/V ,
using the ideal gas law. This means that the entropy of mixing for our
problem is

∆S = xNkB

∫ V

xV

dV1

V1
+ (1 − x)NkB

∫ V

(1−x)V

dV2

V2
(14.39)

and hence

Fig. 14.6 Gas 1 is confined in a vessel
of volume xV , while gas 2 is confined in
a vessel of volume (1−x)V . Both gases
are at pressure p and temperature T .
Mixing occurs once the tap on the pipe
connecting the two vessels is opened.

∆S = −NkB(x lnx + (1 − x) ln(1 − x)). (14.40)

This equation is plotted in Fig. 14.7. As expected, there is no entropy

Fig. 14.7 The entropy of mixing ac-
cording to eqn 14.40.

increase when x = 0 or x = 1. The maximum entropy change occurs
when x = 1

2 , in which case ∆S = NkB ln 2. This of course corresponds to
the equilibrium state in which no further increase of entropy is possible.

This expression for x = 1
2 also admits to a very simple statistical

interpretation. Before the mixing of the gases takes place, we know that
gas 1 is only in the first vessel and gas 2 is only in the second vessel.
After mixing, each molecule can exist in additional “microstates”; for
every microstate with a molecule of gas 1 on the left there is now an
additional one with a molecule of gas 1 now on the right. Therefore Ω
must be multiplied by 2N and hence S must increase by kB ln 2N , which
is NkB ln 2.

This treatment has a profound consequence: distinguishability is an
important concept! We have assumed that there is some tangible dif-
ference between gas 1 and gas 2, so that there is some way to label
whether a particular molecule is gas 1 or gas 2. For example, if the
two gases were nitrogen and oxygen, one could measure the mass of the
molecules to determine which was which. But what if the two gases
were actually the same? Physically, we would expect that mixing them
would have no observable consequences, so there should be no increase
in entropy. Thus mixing should only increase entropy if the gases really
are distinguishable. We will return to this issue of distinguishability in
Chapter 29.



Computational strategy for finding the entropy change: 
replace the non-equilibrium process with an equilibrium one
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containers are assumed to be thermally isolated from their surroundings.
For the initial state, the ideal gas law implies that

piV0 = RTi, (14.26)

and for the final state that

Fig. 14.4 The Joule expansion between
volume V0 and volume 2V0. One mole
of ideal gas (pressure pi, temperature
Ti) is confined to the left-hand side of
a container in a volume V0. The con-
tainer is thermally isolated from its sur-
roundings. The tap between the two
parts of the container is then suddenly
opened and the gas fills the entire con-
tainer of volume 2V0 (and has new tem-
perature Tf and pressure pf).

pf(2V0) = RTf . (14.27)

Since the system is thermally isolated from its surroundings, ∆U = 0.
Also, since U is only a function of T for an ideal gas, ∆T = 0 and hence
Ti = Tf . This implies that piV0 = pf(2V0), so that the pressure halves,
i.e.,

pf =
pi

2
. (14.28)

It is hard to calculate directly the change of entropy of a gas in a
Joule expansion along the route that it takes from its initial state to
the final state. The pressure and volume of the system are undefined
during the process immediately after the partition is removed since the
gas is in a non-equilibrium state. However, entropy is a function of state
and therefore for the purposes of the calculation, we can take another
route from the initial state to the final state since changes of functions
of state are independent of the route taken. Let us calculate the change
in entropy for a reversible isothermal expansion of the gas from volume
V0 to volume 2V0 (as indicated in Fig. 14.5). Since the internal energy is
constant in the isothermal expansion of an ideal gas, dU = 0, and hence
the new form of the first law in eqn 14.18 gives us T dS = p dV , so that

∆S =

∫ f

i
dS =

∫ 2V0

V0

p dV

T
=

∫ 2V0

V0

R dV

V
= R ln 2. (14.29)

Since S is a function of state, this increase in entropy R ln 2 is also the
change of entropy for the Joule expansion.

Fig. 14.5 The Joule expansion between
volume V0 and volume 2V0 and a re-
versible isothermal expansion of a gas
between the same volumes. The path in
the p–V plane for the Joule expansion
is undefined, whereas it is well defined
for the reversible isothermal expansion.
In each case however, the start and end
points are well defined. Since entropy
is a function of state, the change in en-
tropy for the two processes is the same,
regardless of route.

Example 14.3

What is the change of entropy in the gas, surroundings, and Universe
during a Joule expansion?
Solution:
Above, we have worked out ∆Sgas for the reversible isothermal expansion
and the Joule expansion: they have to be the same. What about the
surroundings and the Universe in each case?

For the reversible isothermal expansion of the gas, we deduce the
change of entropy in the surroundings so that the entropy in the Universe
does not increase (because we are dealing with a reversible situation).

∆Sgas = R ln 2,

∆Ssurroundings = −R ln 2,

∆SUniverse = ∆Sgas + ∆Ssurroundings = 0. (14.30)
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NkB
= − x log(x) − (1 − x)log(1 − x)


