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Fig. 3.14 The calculation of entropy from
heat capacity data. (a) The variation of
Cp /T with the temperature for a sample.
(b) The entropy, which is equal to the area
beneath the upper curve up to the
corresponding temperature, plus the
entropy of each phase transition passed.

Exploration Allow for the
temperature dependence of the heat

capacity by writing C = a + bT + c/T 2, and
plot the change in entropy for different
values of the three coefficients (including
negative values of c).

(d) The measurement of entropy

The entropy of a system at a temperature T is related to its entropy at T = 0 by meas-
uring its heat capacity Cp at different temperatures and evaluating the integral in eqn
3.18, taking care to add the entropy of transition (∆trsH/Ttrs) for each phase transition
between T = 0 and the temperature of interest. For example, if a substance melts at Tf
and boils at Tb, then its entropy above its boiling temperature is given by

S(T) = S(0) + !
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(3.20)

All the properties required, except S(0), can be measured calorimetrically, and the 
integrals can be evaluated either graphically or, as is now more usual, by fitting a 
polynomial to the data and integrating the polynomial analytically. The former 
procedure is illustrated in Fig. 3.14: the area under the curve of Cp /T against T is the
integral required. Because dT/T = d ln T, an alternative procedure is to evaluate the
area under a plot of Cp against ln T.

One problem with the determination of entropy is the difficulty of measuring heat
capacities near T = 0. There are good theoretical grounds for assuming that the heat
capacity is proportional to T 3 when T is low (see Section 8.1), and this dependence 
is the basis of the Debye extrapolation. In this method, Cp is measured down to as 
low a temperature as possible, and a curve of the form aT 3 is fitted to the data. That fit 
determines the value of a, and the expression Cp = aT3 is assumed valid down to T = 0.

Illustration 3.4 Calculating a standard molar entropy

The standard molar entropy of nitrogen gas at 25°C has been calculated from the
following data:

S 7
m/(J K−1 mol−1)

Debye extrapolation 1.92
Integration, from 10 K to 35.61 K 25.25
Phase transition at 35.61 K 6.43
Integration, from 35.61 K to 63.14 K 23.38
Fusion at 63.14 K 11.42
Integration, from 63.14 K to 77.32 K 11.41
Vaporization at 77.32 K 72.13
Integration, from 77.32 K to 298.15 K 39.20
Correction for gas imperfection 0.92

Total 192.06

Therefore,

Sm(298.15 K) = Sm(0) + 192.1 J K−1 mol−1

Example 3.3 Calculating the entropy at low temperatures

The molar constant-pressure heat capacity of a certain solid at 4.2 K is 0.43 J K−1

mol−1. What is its molar entropy at that temperature?
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(d) The measurement of entropy

The entropy of a system at a temperature T is related to its entropy at T = 0 by meas-
uring its heat capacity Cp at different temperatures and evaluating the integral in eqn
3.18, taking care to add the entropy of transition (∆trsH/Ttrs) for each phase transition
between T = 0 and the temperature of interest. For example, if a substance melts at Tf
and boils at Tb, then its entropy above its boiling temperature is given by
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All the properties required, except S(0), can be measured calorimetrically, and the 
integrals can be evaluated either graphically or, as is now more usual, by fitting a 
polynomial to the data and integrating the polynomial analytically. The former 
procedure is illustrated in Fig. 3.14: the area under the curve of Cp /T against T is the
integral required. Because dT/T = d ln T, an alternative procedure is to evaluate the
area under a plot of Cp against ln T.

One problem with the determination of entropy is the difficulty of measuring heat
capacities near T = 0. There are good theoretical grounds for assuming that the heat
capacity is proportional to T 3 when T is low (see Section 8.1), and this dependence 
is the basis of the Debye extrapolation. In this method, Cp is measured down to as 
low a temperature as possible, and a curve of the form aT 3 is fitted to the data. That fit 
determines the value of a, and the expression Cp = aT3 is assumed valid down to T = 0.

Illustration 3.4 Calculating a standard molar entropy

The standard molar entropy of nitrogen gas at 25°C has been calculated from the
following data:

S 7
m/(J K−1 mol−1)

Debye extrapolation 1.92
Integration, from 10 K to 35.61 K 25.25
Phase transition at 35.61 K 6.43
Integration, from 35.61 K to 63.14 K 23.38
Fusion at 63.14 K 11.42
Integration, from 63.14 K to 77.32 K 11.41
Vaporization at 77.32 K 72.13
Integration, from 77.32 K to 298.15 K 39.20
Correction for gas imperfection 0.92

Total 192.06

Therefore,

Sm(298.15 K) = Sm(0) + 192.1 J K−1 mol−1

Example 3.3 Calculating the entropy at low temperatures

The molar constant-pressure heat capacity of a certain solid at 4.2 K is 0.43 J K−1

mol−1. What is its molar entropy at that temperature?
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Total 79.8 J/mol K




