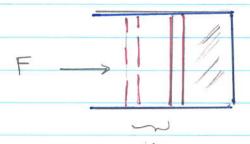
Work

· Consider the compression of a gas



now = Adx = -dV

So since p = F/A we have

dW = -p(T, V) dV

determined by EOS BP, KT

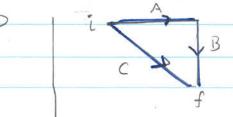
- This is the work by me on gas. Of course the work by the gas on me is minus this, dW = + pdV.
- · So

 $W_{if} = \int_{-\infty}^{\infty} p(T, V) dV$

work by me <0 Work by gas

= Area under curve

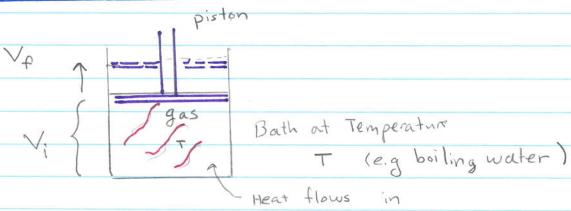
· The work done depends on the path e.g.



W = WA + WB

· i.e. the work WA + WB # WC
B
We say IW is an inexact differential. Meaning
it represents a small amount of work, dV is an
exact differential and represents a small change in
volume V, dv = V, -V; it does not depend on the path
The first Law
The change in energy of the system is
the heat put in and the work done
du = tQ + tW = tQ - tW.
amount amount of work
Change in of heat done on gas energy put in
energy put in
• The change in energy is independent of the path
P 1
· At the initial and
To final points the
temperature is determined
by the eas P=P(T,V)
•
And Du=Uf-ui
TIZ- 2.
I = I = I = I = I = I = I = I = I = I =

Isothermal Expansion of Ideal Gas



As the piston is raised the gas does work pdV (we do negative work of W = -pdV.) Heat flows in from both to maintain a constant temperature. We do it slowly enough so that T is constant at all times. Lets consider ideal gasses where U = Ne(T). Since Tis fixed dU = 0. What is the heat flowing in?

da = da + dw

ta = - tw = p dV

 $\triangle Q = \int_{-\infty}^{T} dQ = \int_{-\infty}^{T} P(T, V) dV = \int_{-\infty}^{Vf} Nk_B T dV$

all times we are in equilibrium so

So integrating heat inflow of ideal gas during isothermal expansion $\Delta O = N k_B T ln \left(\frac{V_f}{V_i}\right)$ We remind that $\Delta U = 0$ but $-W_{if} = Q_{if}$. The work done by the gas is $W_{if}^{\text{out}} = Q_{if}$