Big Numbers
• Avagadroś number is big

$$N_{A} = 6.62 \times 10^{23}$$

• But compare (log means natural log)
log NA ~ 50 (54.7 to be more exact)
• What about the number of rearrangements of
the molecules in this room
NA!
This is exponentially large. We will show
in a sec, that
 $N! \simeq (N)^{N} = N^{N}e^{-N} \leftarrow Stirling Approx$
Thus
 $log N! = N \log N - N \leftarrow Stirling Approx$
So 54.7
 $So = 54.7$

Probability and Statistics: 2

So even the log N! is a very large number. Lets call this exponentially large Proof log N! = log (1) + log (2) + log (3) + log N This sum of logs can be replaced by an integral if N is large (see figure) log NI ~ [dx log x by parts $\sim \times \log \times - \times |$ log NI = Nlog N - N or since N! = elog N! NI = NNe-N You can find a better approximation, if you work harder (see book), which gives $N! = N^{N} e^{-N} \sqrt{2TT N}$ But we will not generally need the ZTTN.

Deriving the Stirling approximation:

Replace the sum with integral

Accuracy of Stirling

- Points: log(n!)
- Dashed: $n \log n n$
- Solid: $\log(n^n e^{-n} \sqrt{2\pi n})$

We will used the dashed