Thermodynamic Potentials; U and H a reap

$$d U = dQ_{in} - dW_{out} \qquad First Law$$

$$d U = T dS - p dV \qquad Second Law$$
()So the "notural variables" to describe U are
S and V, U(S,V):
We have

$$\frac{dU = (\partial U) dS + (\partial U) dV}{(\partial S)} dV = (\partial S) dV = (\partial U) dS + (\partial U) dV$$

$$(\partial S) dS + (\partial U) dV = (\partial U) dV = (\partial S) dV$$

$$(\partial S) dS + (\partial U) dV = (\partial U) dV = (\partial S) dV$$

$$(\partial S) dS + (\partial U) dV = (\partial U) dV = (\partial S) dV$$

$$(\partial S) dS + (\partial U) dS = (\partial U) dV = (\partial S) dV$$

$$(\partial S) dS + (\partial U) dS = (\partial U) dV = (\partial S) dV$$

$$(\partial S) dS + (\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dS + (\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV = (\partial S) dV = (\partial S) dV$$

$$(\partial S) dV =$$

Function of state		Differential	Natural variables	First derivatives	
Internal energy	U	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	U = U(S, V)	$T = \left(\frac{\partial U}{\partial S}\right)_V,$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Enthalpy	H = U + pV	$\mathrm{d}H = T\mathrm{d}S + V\mathrm{d}p$	H = H(S, p)	$T = \left(\frac{\partial H}{\partial S}\right)_p,$	$V = \left(\frac{\partial H}{\partial p}\right)_S$
Helmholtz function	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial F}{\partial T}\right)_V,$	$p = -\left(\frac{\partial F}{\partial V}\right)_T$
Gibbs function	G = H - TS	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p,$	$V = \left(\frac{\partial G}{\partial p}\right)_T$

Thermodynamic Potentials: The enthalpy
$$H$$
 a recap
 $dU = TdS - pdV$
Now integrate by parts $pdV = d(pV) - Vdp$
So
 $i \quad dU = TdS - [d(pV) - Vdp]$
Or defining $H \equiv U + pV$ and $dH = d(U + pV)$, have:
 $dH = T.dS + Vdp$
() So the "natural variables" for H are S and p :
 $dH = (2H) dS + (2H) dV$
 $(3S)_p = (3P)_S$
Comparing to A we find
 $T = (3H/3S)_p = V = (3H/3p)_S - TdS$
(2) For constant pressure processes $dH_p = dQ_p = C_p dT$
 $\Delta H = \int C_p dT$ or $C_p = (2H) - DQ_p = C_p dT$
 $\Delta S = \int C_p dT$

Function of state		Differential	Natural variables	First derivatives	
Internal energy	U	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	U = U(S, V)	$T = \left(\frac{\partial U}{\partial S}\right)_V,$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Enthalpy	H = U + pV	$\mathrm{d}H = T\mathrm{d}S + V\mathrm{d}p$	H=H(S,p)	$T = \left(\frac{\partial H}{\partial S}\right)_p,$	$V = \left(\frac{\partial H}{\partial p}\right)_S$
Helmholtz function	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial F}{\partial T}\right)_V,$	$p = -\left(\frac{\partial F}{\partial V}\right)_T$
Gibbs function	G = H - TS	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p,$	$V = \left(\frac{\partial G}{\partial p}\right)_T$

Free Energy in Thermodynamics
• Often a system is in contact with a
reservoir at temperature T, and Volume V

$$dU = dO - dW$$

 $dU = T dS - p dV$
 $uith$ reversible processes
Now the temperature is fixed, so it makes
sense to integrate the TdS by parts
TdS = d(TS) - SdT
Leading to (after bringing d(TS) to the LHS):
 $d(u - TS) = -SdT - p dV$
which we identify as the Free Energy
 $dF = -SdT - p dV$
 $F = U - TS$
 $OThe natural variables here are T, V, i.e. F(T,V)$
 $dF = (\frac{\partial F}{\partial T}) \frac{dT + (\frac{\partial F}{\partial V})}{V} \frac{\partial F}{T}$

Function of state		Differential	Natural variables	First derivatives	
Internal energy	U	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	U = U(S, V)	$T = \left(\frac{\partial U}{\partial S}\right)_V,$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Enthalpy	H = U + pV	$\mathrm{d}H = T\mathrm{d}S + V\mathrm{d}p$	H=H(S,p)	$T = \left(\frac{\partial H}{\partial S}\right)_p,$	$V = \left(\frac{\partial H}{\partial p}\right)_S$
Helmholtz function	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial F}{\partial T}\right)_V,$	$p = -\left(\frac{\partial F}{\partial V}\right)_T$
Gibbs function	G = H - TS	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p,$	$V = \left(\frac{\partial G}{\partial p}\right)_T$

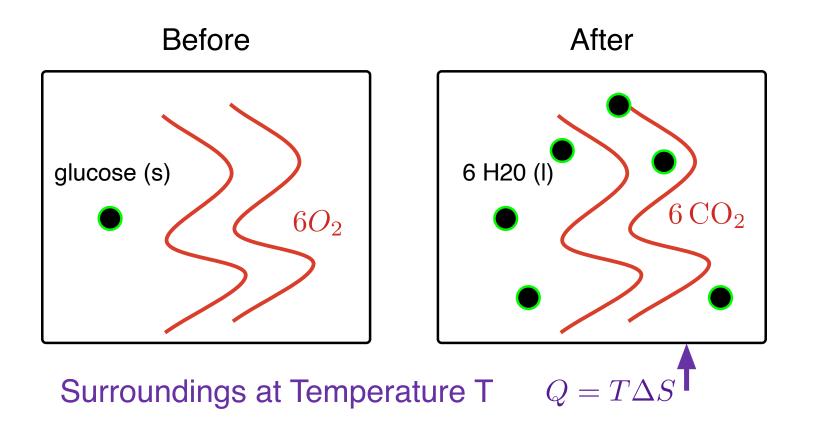
Example 1 reversible · For a system at temperature T the work done is given by $\Delta F = W_{in}$. Why is it ΔF and not $\Delta E?$ (ase1: No heat flow Sconst; In this case no heat is exchanged with the environment $\Delta U = 0 + W_{in}$ insulated Here DU = Win walls Case 2: Const T DV In this case T is const: Tas Temperature DU = Q + Win DF = DU-TDS = Win Now -TOS= Qout heat comes out as the gas is compressed at constant T: Mathematically dF = - SdT - pdV Note Vi>Vf $\Delta F = -\int_{V_{f}}^{V_{f}} \frac{NIKT}{V} dV = + NKT \ln \left(\frac{V_{i}}{V_{f}}\right) > 0$

Free Energy Reservoir System Q To Then the system and reservoir will evolve to maximize entropy dSsys + dSR >0 × The heat given to the system (and lost by the reservoir) is Q. So dSR = - dQ/T Then dS₅₉₅ - <u>40</u> ≥0 AX In general dQ = dU + dW out dSsys - (du + dWout) >0 Or in terms of free energy F=U-TS - dF ≥ tWout This is the same as & and Art

In words: The work that can be extracted during any process is less than the drop in free energy. The maximum work is $W_{out}^{max} = -\Delta F$. Finit $F_{init} \longrightarrow -\Delta F = F_{init} - F_{final} \gg W_{out}$ · Similarly the work required Win = - Wout to bring about a change in free energy is greater than $\Delta F = W_{in}^{min}$ i.e. $\Delta F \leq W_{in}$ If no work is done then the system evolves to minimize, its free energy AF ≤ O K the system absorbs and gives heat to reservoir until F is a minimum

Example: Oxidation of Glucose I mol of Glucose C6H12O6 is oxidized at NTP (25°C and Ibar) according to the reaction $C_{6}H_{12}O_{6}^{(s)}+GO_{2}(g) \iff G(O_{2}(g)+GH_{2}O(l))$ The enthalpy change is $\Delta H = -2808 \text{ kJ/mol}$, with entropy change DS = + 182 J/oK. What was the change in energy and the maximum work that can be done ? The volume change at const pressure is AV ~O since we have 6 moles of gasses at the end and beginning. The liquids don't contribute much to BV. (See stide) $So: \Delta U = \Delta H = -2808 kJ$ 2) The maximum work is $W = -\Delta F = -\Delta U + T\Delta S = 2808 kJ + 54 kJ = 2862 kJ$ heat coming into system from Surroundings allowing more work $\frac{1}{N} \frac{\Delta S}{K_{B}} = \frac{\Delta S}{R} = \frac{182J/^{\circ}K}{8.32J^{\circ}/_{K}} = 22$ The entropy change

Oxidation of Glucose Cartoon



is positive indicating that heat will come into the system allowing the system to do more Work than simply - DU The DS is greater than zero in part because we have take a large organized molecule and broken it up into constituents which can now move in more ways, i.e. more phase space. (see slide) Roughly each of the 6 carbons has 4 bonds with lev per bond, so 24eV (> 2400 KJ /mol~AH. We used that INA (IeV) = 100 KJ. This gives an order of magnitude for SH The DS entropy (in units of Kg) associated with the ~ 6 new degrees of freedom per glucose molecule molecule 15 $\frac{\Delta S}{6 N_A k_B} = \frac{1}{6} \frac{\Delta S}{R} = \frac{22}{6} \frac{3.5}{1.5} = \frac{7}{1.5}$ This is an order 1 number as is typical.

κ.

Gibbl's Free Energy
• Often a system will interact with a reservoir
at fixed T and pressure P
du = TdS - pdV
Now integrate TdS = d(TS) - SdT and pdV = d(pV) - Vdp
by parts
dG = - SdT + Vdp
$$G = U - TS + pV$$

(1) The natural Variables are T, P; G(T, P)
dG = $\begin{pmatrix} \partial G \\ \partial T \end{pmatrix} \begin{pmatrix} dT + \begin{pmatrix} \partial G \\ \partial p \end{pmatrix} \\ \begin{pmatrix} \partial p \end{pmatrix}_T \end{pmatrix}_T$
So comparison gives
 $\begin{pmatrix} \partial G/\partial T \end{pmatrix}_P = -S \quad (\partial G/\partial p)_T = V$
(2) The gibbs free energy is most useful for
describing chemical reactions where temperature
and pressure are fixed. Then one is
interested in extracting work during the
chemical process

Function of state		Differential	Natural variables	First derivatives	
Internal energy	U	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	U = U(S, V)	$T = \left(\frac{\partial U}{\partial S}\right)_V,$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Enthalpy	H = U + pV	$\mathrm{d}H = T\mathrm{d}S + V\mathrm{d}p$	H = H(S, p)	$T = \left(\frac{\partial H}{\partial S}\right)_p,$	$V = \left(\frac{\partial H}{\partial p}\right)_S$
Helmholtz function	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial F}{\partial T}\right)_V,$	$p = -\left(\frac{\partial F}{\partial V}\right)_T$
Gibbs function	G = H - TS	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p,$	$V = \left(\frac{\partial G}{\partial p}\right)_T$

A generalization: Constant Temperature and Pressure Now we will have the Gibbs Free energy since the temperature and pressure are constant We have a system Sys Dov exchanging heat with its environment at constant T and P In contrast with the previous case the system can change its volume. The total work done by the system is dw out = p dV + dw other . Prominent examples of "other" sorts of work are electrical and Chemical work, e.g. photosynthesis, dSsys + dSR >0 dSsys - 20 ≥0 T Now dQ = dU + pdV + dW out. Plugging in and regrouping in terms of G = U-TS + pV we have $- \partial G \ge dW_{out}^{Other}$ G = U - TS + pVSimilar statements apply, as in the free energy clase
 Most importantly if no work is extracted in the

process dWout = 0, and $dG \leq O$ i.e. this means that the Gibbs Free energy will evolve to a minimum. · In general the drop in the Gibbs Free energy is the maximum electro-Chemical work that can be extracted from the process Ginit Wother 6 init - Grad > W chem Gfinal