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Figure 11: The low temperature heat capacity of potassium, plotted as CV/T versus T2. From
C. Kittel, and H. Kroemer, Themal physics (W.H. Freeman & co., New York NY, 1980).

Hence,
cV

T
= γ+ A T2. (8.118)

If follows that a plot of cV/T versus T2 should yield a straight line whose intercept
on the vertical axis gives the coefficient γ. Figure 11 shows such a plot. The fact
that a good straight line is obtained verifies that the temperature dependence of
the heat capacity predicted by Eq. (8.117) is indeed correct.

8.14 White-dwarf stars

A main-sequence hydrogen-burning star, such as the Sun, is maintained in equi-
librium via the balance of the gravitational attraction tending to make it collapse,
and the thermal pressure tending to make it expand. Of course, the thermal en-
ergy of the star is generated by nuclear reactions occurring deep inside its core.
Eventually, however, the star will run out of burnable fuel, and, therefore, start to
collapse, as it radiates away its remaining thermal energy. What is the ultimate
fate of such a star?

A burnt-out star is basically a gas of electrons and ions. As the star collapses,
its density increases, so the mean separation between its constituent particles
decreases. Eventually, the mean separation becomes of order the de Broglie
wavelength of the electrons, and the electron gas becomes degenerate. Note,
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that the de Broglie wavelength of the ions is much smaller than that of the elec-
trons, so the ion gas remains non-degenerate. Now, even at zero temperature,
a degenerate electron gas exerts a substantial pressure, because the Pauli exclu-
sion principle prevents the mean electron separation from becoming significantly
smaller than the typical de Broglie wavelength (see the previous section). Thus,
it is possible for a burnt-out star to maintain itself against complete collapse un-
der gravity via the degeneracy pressure of its constituent electrons. Such stars
are termed white-dwarfs. Let us investigate the physics of white-dwarfs in more
detail.

The total energy of a white-dwarf star can be written

E = K + U, (8.119)

where K is the total kinetic energy of the degenerate electrons (the kinetic energy
of the ion is negligible) and U is the gravitational potential energy. Let us assume,
for the sake of simplicity, that the density of the star is uniform. In this case, the
gravitational potential energy takes the form

U = −
3

5

G M2

R
, (8.120)

where G is the gravitational constant, M is the stellar mass, and R is the stellar
radius.

Let us assume that the electron gas is highly degenerate, which is equivalent
to taking the limit T → 0. In this case, we know, from the previous section, that
the Fermi momentum can be written

pF = Λ

(

N

V

)1/3

, (8.121)

where
Λ = (3π2)1/3 h̄. (8.122)

Here,

V =
4π

3
R3 (8.123)
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is the stellar volume, and N is the total number of electrons contained in the
star. Furthermore, the number of electron states contained in an annular radius
of p-space lying between radii p and p + dp is

dN =
3 V

Λ3
p2 dp. (8.124)

Hence, the total kinetic energy of the electron gas can be written

K =
3 V

Λ3

∫pF

0

p2

2 m
p2 dp =

3

5

V

Λ3

p5
F

2 m
, (8.125)

where m is the electron mass. It follows that

K =
3

5
N
Λ2

2 m

(

N

V

)2/3

. (8.126)

The interior of a white-dwarf star is composed of atoms like C12 and O16 which
contain equal numbers of protons, neutrons, and electrons. Thus,

M = 2 N mp, (8.127)

where mp is the proton mass.

Equations (8.119), (8.120), (8.122), (8.123), (8.126), and (8.127) can be
combined to give

E =
A

R2
−

B

R
, (8.128)

where

A =
3

20

(

9π

8

)2/3 h̄2

m





M

mp





5/3

, (8.129)

B =
3

5
G M2. (8.130)

The equilibrium radius of the star R∗ is that which minimizes the total energy E.
In fact, it is easily demonstrated that

R∗ =
2 A

B
, (8.131)
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which yields

R∗ =
(9π)2/3

8

h̄2

m

1

G m
5/3
p M1/3

. (8.132)

The above formula can also be written

R∗

R"
= 0.010

(

M"

M

)1/3

, (8.133)

where R" = 7 × 105 km is the solar radius, and M" = 2 × 1030 kg is the solar
mass. It follows that the radius of a typical solar mass white-dwarf is about
7000 km: i.e., about the same as the radius of the Earth. The first white-dwarf to
be discovered (in 1862) was the companion of Sirius. Nowadays, thousands of
white-dwarfs have been observed, all with properties similar to those described
above.

8.15 The Chandrasekhar limit

One curious feature of white-dwarf stars is that their radius decreases as their
mass increases [see Eq. (8.133)]. It follows, from Eq. (8.126), that the mean
energy of the degenerate electrons inside the star increases strongly as the stellar
mass increases: in fact, K ∝ M4/3. Hence, if M becomes sufficiently large the
electrons become relativistic, and the above analysis needs to be modified. Strictly
speaking, the non-relativistic analysis described in the previous section is only
valid in the low mass limit M % M". Let us, for the sake of simplicity, consider
the ultra-relativistic limit in which p & m c.

The total electron energy (including the rest mass energy) can be written

K =
3 V

Λ3

∫pF

0

(p2 c2 + m2 c4)1/2 p2 dp, (8.134)

by analogy with Eq. (8.125). Thus,

K '
3 V c

Λ3

∫pF

0



p3 +
m2 c2

2
p + · · ·



dp, (8.135)
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giving

K '
3

4

V c

Λ3

[

p4
F + m2 c2 p2

F + · · ·
]

. (8.136)

It follows, from the above, that the total energy of an ultra-relativistic white-
dwarf star can be written in the form

E '
A − B

R
+ C R, (8.137)

where

A =
3

8

(

9π

8

)1/3

h̄ c





M

mp





4/3

, (8.138)

B =
3

5
G M2, (8.139)

C =
3

4

1

(9π)1/3

m2 c3

h̄





M

mp





2/3

. (8.140)

As before, the equilibrium radius R∗ is that which minimizes the total energy
E. However, in the ultra-relativistic case, a non-zero value of R∗ only exists for
A − B > 0. When A − B < 0 the energy decreases monotonically with decreasing
stellar radius: in other words, the degeneracy pressure of the electrons is inca-
pable of halting the collapse of the star under gravity. The criterion which must
be satisfied for a relativistic white-dwarf star to be maintained against gravity is
that

A

B
> 1. (8.141)

This criterion can be re-written

M < MC, (8.142)

where

MC =
15

64
(5π)1/2 (h̄ c/G)1/2

m2
p

= 1.72 M" (8.143)

is known as the Chandrasekhar limit, after A. Chandrasekhar who first derived it
in 1931. A more realistic calculation, which does not assume constant density,
yields

MC = 1.4 M". (8.144)
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Thus, if the stellar mass exceeds the Chandrasekhar limit then the star in question
cannot become a white-dwarf when its nuclear fuel is exhausted, but, instead,
must continue to collapse. What is the ultimate fate of such a star?

8.16 Neutron stars

At stellar densities which greatly exceed white-dwarf densities, the extreme pres-
sures cause electrons to combine with protons to form neutrons. Thus, any star
which collapses to such an extent that its radius becomes significantly less than
that characteristic of a white-dwarf is effectively transformed into a gas of neu-
trons. Eventually, the mean separation between the neutrons becomes compara-
ble with their de Broglie wavelength. At this point, it is possible for the degen-
eracy pressure of the neutrons to halt the collapse of the star. A star which is
maintained against gravity in this manner is called a neutron star.

Neutrons stars can be analyzed in a very similar manner to white-dwarf stars.
In fact, the previous analysis can be simply modified by letting mp → mp/2 and
m → mp. Thus, we conclude that non-relativistic neutrons stars satisfy the mass-
radius law:

R∗

R"
= 0.000011

(

M"

M

)1/3

, (8.145)

It follows that the radius of a typical solar mass neutron star is a mere 10 km.
In 1967 Antony Hewish and Jocelyn Bell discovered a class of compact radio
sources, called pulsars, which emit extremely regular pulses of radio waves. Pul-
sars have subsequently been identified as rotating neutron stars. To date, many
hundreds of these objects have been observed.

When relativistic effects are taken into account, it is found that there is a
critical mass above which a neutron star cannot be maintained against gravity.
According to our analysis, this critical mass, which is known as the Oppenheimer-
Volkoff limit, is given by

MOV = 4 MC = 6.9 M". (8.146)

A more realistic calculation, which does not assume constant density, does not
treat the neutrons as point particles, and takes general relativity into account,
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gives a somewhat lower value of

MOV = 1.5—2.5 M". (8.147)

A star whose mass exceeds the Oppenheimer-Volkoff limit cannot be maintained
against gravity by degeneracy pressure, and must ultimately collapse to form a
black-hole.
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