Chemical Potential

· So for we have been dealing with fixed numbers of particles. But in actuallity the number of particles can functuate through microscopic reactions, e.g. 242+02 -2 24,0 We should be able to predict the mean abundances. In addition some particles are not conserved at all $e^+ + e^- \iff \gamma + \gamma$ Themodynamics Definition du = TdS -pdV + mdN Cenergy required to add an additional particle to the system S_{o} $M = \left(\frac{\partial U}{\partial N}\right)_{S,V}$ Think "salinity" of salt water. If the concentration is high the chemical potential is also high. It is some what analogous to temperature

We can still change variables

$$F = U - TS$$
So

$$dF = -S dT - p dV + p dN$$
And thus we have also:

$$\mu = \begin{pmatrix} 3F \\ 3N \end{pmatrix} + \frac{1}{7} \sqrt{2}$$
Equilibration

$$different$$
• Given two Systems exchanging energy
and particles, when

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{2}$$
equilibrium?
• Answer: the two Systems will equilibrate
when they have the same temperature and
chemical potential.
• First note that

$$du = TdS - p dV + p dV - p dN$$
or
$$dS = \frac{1}{7} dU + \frac{p}{7} dV - \frac{1}{7} \frac{dN}{2}$$

$$\frac{H_{1} + H_{2}}{N_{1} + N_{2}}$$
The number of configurations of system 1 is
 $\Sigma_{1}(U, N)$ and $\Sigma_{2}(U_{2}, N_{2})$ for system 2. The
total number of configurations is
 $\Sigma_{Tor} = \Sigma_{1}(E_{1}, N_{1}) \Sigma_{2}(E_{2}, N_{2})$
Then
In $\Sigma_{Tor} = \ln \Omega_{1} + \ln \Omega_{2}$
or
 $S_{Tor} = S_{1}(U_{1}, N_{1}) + S_{2}(U_{2}, N_{2})$
The cambined system will evolve to maximize
the total number of configurations
 $dS_{Tor} = (\frac{\partial S_{1}}{\partial U_{1}} \frac{dU_{1}}{dt} + (\frac{\partial S_{1}}{\partial U_{1}} \frac{dU_{2}}{dt} + (\frac{\partial S_{2}}{\partial U_{1}} \frac{dN_{2}}{dt} + \frac{dN_{2}}{N_{1}} \frac{dN_{2}}{dt}$
Now since: $U_{1} + U_{2} = U^{-1}$ total energy
And so, $dN_{1} = -dN_{1}$

Comparison of Temperature and m Note $dS = \frac{1}{T} dU + \frac{p}{T} dV - \frac{m}{T} dN$ $\frac{1}{\tau} \longleftrightarrow \mathcal{U}$ If VT is large You are very hungry for energy If -m/T is large, you are very >hungry for particles. In an ideal gas the concentration is very low, we are very hungry for more particles and m/T will be very negative

So

$$\lambda U(S,V,N) = U(\lambda S, \lambda V, \lambda N)$$

Differentiating with respect to λ , i.e. taking $d/d\lambda$ of the result
 $U(S,V,N) = \frac{\partial U}{\partial (S} + \frac{\partial U}{\partial (N)} + \frac{\partial U}{\partial (\lambda N)}$
Now setting $\lambda = 1$, and using, $dU = T dS - p dV + \mu dN$,
implying that $\frac{\partial U}{\partial S} = T$ and $\frac{\partial U}{\partial N} = \mu$ etc gives
 $U = TS - pV + \mu N$
This is the Gibbs - Duhem
relation again
The chemical Potential of an ideal gas
Note $G = F + pV = \mu N$ and we know F for
an ideal gas
 $G = -NkT \ln \left(\frac{eV_N}{\lambda^3}\right) + NkT = \mu N$
with $\ln e = 1$ find :

$$\mathcal{M} = -kT \ln \left(\frac{V_N}{\lambda^3}\right)$$

In terms of the density,
$$V_N = V/N = V/n$$
, we find
 $\mu = kT \ln (n\lambda^3)$
Sometimes V_{λ^3} is called the quantum density,
wich is a very large density, when the debroglie
wavelengths overlap. So we have
 $n = n_Q e^{m/T}$ with $n_Q = (2TmkT)^2$
 λ^3

Since the density is normally much lower than the quantum density, we normally have that μ/T is a large negative number