
Problem 1. Nitrogen gas

Two moles of nitrogen (N2) are in a 6-L container at a pressure of 5 bar.
Try not to look up numbers. Rather try to remember a few numbers and ratios, and

put them in context, like I did in lecture. A summary of the constants you will need in this
course is given in an Appendix. Read this appendix as you work through this problem.

Here are some things to consider: the Nitrogen atom has seven protons and seven neu-
trons, and the N2 molecule contains two nitrogen atoms. In part (b) it is useful to know
that the binding energy of an electron in the hydrogen atom is 13.6 eV, which is known as
the Rydberg constant. The Bohr model of hydrogen relates the binding enegy (BE) of an
electron in hydrogren to the Bohr radius a0 ' 0.53 Å

|BE| = ~2

2mea20
= 13.6 eV (1)

A quick reminder about what you will need about the Bohr model is given in the appendix.
You will also need the ratio of the proton to electron mass, mp/me, which was given in
lecture.

(a) Find the average kinetic energy of one molecule of the gas in electron volts and the
root-mean-square velocity in m/s. I find that the energy and rms velocity are, 0.04 eV
and 400 m/s. Is the kinetic energy 1

2
mv2 ?

(b) The bond length of N2 (i.e. the distance between the N atoms) is r0 ' 2a0 ' 1 Å =
0.1 nm. Determine the moment of inertia, and use the equipartition theorem to de-
termine the root-mean-squared angular momentum of the molecule in units of ~ in
terms of the mass of a nitrogen atom mN , the bound length r0, the temperature, and
fundamental constants, i.e. find1

Lrms

~
≡

√〈
~L2
〉

~
. (2)

Evaluate the result numerically. The rotations of the molecule can be considered as
classical when the angular momentum is large compared to ~, otherwise the angular
motion is quantized. If the corrections to the classical description are of order ∼
~/L, how good is the classical description of the motion here? What is parametric
dependence of Lrms on temperature2? Will the classical approximation get worse or
better as the temperature increases?

1Hint: Recall that the rotational kinetic energy
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has two degrees of freedom, while the translational kinetic energy has three. Technically this is because
rotational kinetic energy (or Hamiltonian) has two quadratic forms, 1

2Iω
2
x and 1

2Iω
2
y. You should find about

Lrms ' 8 ~.
2i.e. does it grow exponentially with temperature or as a power, and if a power, then what power?
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Problem 2. Partial Derivatives

Consider a particle whose height z is a function of x, y

z = z1(x, y) = x2 + 2y2 (3)

Now assume x = r cos θ and y = r sin θ. Expressed in terms of x and r the height reads
(work this out!)

z = z2(x, r) = 2r2 − x2 (4)

The functions z1(x, y) and z2(x, r) return the same value (at corresponding arguments)

z = z1(x, y) = z2(x, r) (5)

but they have different functional forms. A mathematician would correctly say that they
are different functions, i.e. different maps from R2 → R. The first map z1 adds the square
of the first argument to twice the square of the second argument, while the second map z2
takes twice the square of the second argument and subtracts the square of the first. For
a mathematician the functional form is paramount, and the mere name of the arguments
makes no difference, z2(a, b) = 2b2−a2. Having two different symbols, z1 and z2, for the same
physical quantity would lead to an explosion of symbols and is not practical. So, physicists
keep track of the function we are working with by indicating the arguments of the function:

z(x, y) ≡ z1(x, y) z(x, r) ≡ z2(x, r) (6)

This sneakily uses the same symbol z for two different functions and it is not clear at all
what z(a, b) means, but clear enough that z(x2, r2) = 2r22 − x22.

When one takes derivatives one needs to be clearer(
∂z

∂x

)
y
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= 2x

(
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)
r
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= −2x (7)

Compute the following3(
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∂x∂θ

Problem 3. A classical solid

A solid consists of an array of atoms in a crystal structure shown below. In a simple model
(used by Einstein at the advent of quantum mechanics) each atom is assumed to oscillate
independently of every other atom 4.

In one dimension a “solid” of N atoms consists of N independent harmonic oscillators.
The Hamiltonian5 of each oscillator is

H(x, p) =
p2

2m
+

1

2
mω2

0x
2 (8)

3Answers: 2x, −2x, 2x(1 + 2 tan2 θ), 4y, 2y, 2y(2 + cot2 θ), 8x sec2(θ) tan(θ)
4In reality the motions of the atoms are coupled to each other, and the oscillation pattern of the solid,

may be found by breaking it up into normal modes.
5The Hamiltonian is as a function of position and momentum returning the energy of the particle (i.e. a

specific map R2 → R).
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where m is the mass of the atom. Here we have written the Hamiltonian in the “mature”
way writing noting that

p2

2m
=

1

2
mv2 and

1

2
mω2

0x
2 =

1

2
k0x

2 (9)

where ω0 =
√
k0/m is the natural oscillation frequency of the oscillator. In two dimen-

sions each atom can oscillate in the x direction and the y direction. Thus, the solid of N
atoms consists of 2N independent oscillators. The Hamiltonian (or energy as a function of
x, y, px, py) of each atom is a sum of two harmonic oscillators:

H(x, y, px, py) =Hx +Hy (10)

=

(
p2x
2m

+
1

2
mω2

0x
2

)
+

(
p2y
2m

+
1

2
mω2

0y
2

)
(11)

Finally in three dimensions (shown below) the solid of N atoms consists of 3N independent
oscillators as shown below, and each atom can oscillate in the x, y, or z directions. The
Hamiltonian of each atom shown in Fig. 1 consists of three harmonic oscillators:

H =Hx +Hy +Hz (12)

=

(
p2x
2m

+
1

2
mω2

0x
2

)
+
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2m

+
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2
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0y
2

)
+
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2m

+
1

2
mω2

0z
2

)
(13)

The total Hamiltonian is a sum of the Hamiltonians of each atom.

(a) By appealing to the equi-partition theorem for a classical harmonic oscillator, deter-
mine the energy of the solid in a classical approximation. Determine the specific heat
C1ml
V for one mole of substance in this case. You should find C1mol

V ' 25 J/mol, known
as the Dulong and Petit rule. The specific heat of a variety of solids is shown on the
next page. What does the simple model get right and wrong?

A Differential Scanning Calorimeter (DSC) is a device used to measure the specific heat of
solids accurately and quickly and costs ∼ $10 K. A schematic of a DSC is shown below and
consists of a reference material with known specific heat, Cref

p . A computer supplies heat to a
reference material (typically by delivering power to a resistive heating element P = I2R) so
that the temperature of the reference material rises at a constant rate. Then, the computer
adjusts the power delivered to sample so that the temperature of the sample equals the
temperature of the reference at all times. By knowing the power delivered to the reference
and the sample, and the specific heat of the reference, the specific heat of the sample can be
determined.

(b) Assume that the reference and sample are NaCl and Diamond respectively. Using
Fig. 2, estimate the ratio of currents delivered to the reference and sample at a tem-
perature of 300 ◦K, Iref/Isample. Assume that Cp ' CV which is a good approximation
for solids and many liquids, and that the sample and reference materials have the same
number of moles6.

6Answer: ∼ 2
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Figure 1:

Specific Heats of Solids: (Taken from Zemansky and Dittman)

It is not an exaggeration to say that the goal of the course is to explain these curves!Figure 2: Specific heats of various solids
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46 2 THE FIRST LAW

back to the surroundings. As a result, the temperature of the system rises less than
when the heating occurs at constant volume. A smaller increase in temperature 
implies a larger heat capacity, so we conclude that in most cases the heat capacity at
constant pressure of a system is larger than its heat capacity at constant volume. 
We show later (Section 2.11) that there is a simple relation between the two heat 
capacities of a perfect gas:

Cp − CV = nR (2.26)°

It follows that the molar heat capacity of a perfect gas is about 8 J K−1 mol−1 larger at
constant pressure than at constant volume. Because the heat capacity at constant vol-
ume of a monatomic gas is about 12 J K−1 mol−1, the difference is highly significant
and must be taken into account.

IMPACT ON BIOCHEMISTRY AND MATERIALS SCIENCE
I2.1 Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the energy transferred as heat to or
from a sample at constant pressure during a physical or chemical change. The term
‘differential’ refers to the fact that the behaviour of the sample is compared to that of
a reference material which does not undergo a physical or chemical change during the
analysis. The term ‘scanning’ refers to the fact that the temperatures of the sample and
reference material are increased, or scanned, during the analysis.

A DSC consists of two small compartments that are heated electrically at a constant
rate. The temperature, T, at time t during a linear scan is T = T0 + αt, where T0 is the
initial temperature and α is the temperature scan rate (in kelvin per second, K s−1). A
computer controls the electrical power output in order to maintain the same temper-
ature in the sample and reference compartments throughout the analysis (see Fig. 2.15).

The temperature of the sample changes significantly relative to that of the reference
material if a chemical or physical process involving the transfer of energy as heat 
occurs in the sample during the scan. To maintain the same temperature in both 
compartments, excess energy is transferred as heat to or from the sample during the
process. For example, an endothermic process lowers the temperature of the sample
relative to that of the reference and, as a result, the sample must be heated more
strongly than the reference in order to maintain equal temperatures.

If no physical or chemical change occurs in the sample at temperature T, we write
the heat transferred to the sample as qp = Cp∆T, where ∆T = T − T0 and we have 
assumed that Cp is independent of temperature. The chemical or physical process 
requires the transfer of qp + qp,ex, where qp,ex is excess energy transferred as heat, to 
attain the same change in temperature of the sample. We interpret qp,ex in terms of an
apparent change in the heat capacity at constant pressure of the sample, Cp, during the
temperature scan. Then we write the heat capacity of the sample as Cp + Cp,ex, and

qp + qp,ex = (Cp + Cp,ex)∆T

It follows that

Cp,ex = = =

where Pex = qp,ex /t is the excess electrical power necessary to equalize the temperature
of the sample and reference compartments.

A DSC trace, also called a thermogram, consists of a plot of Pex or Cp,ex against T (see
Fig. 2.16). Broad peaks in the thermogram indicate processes requiring transfer of 
energy as heat. From eqn 2.23a, the enthalpy change associated with the process is

Pex

α
qp,ex

αt

qp,ex

∆T

Fig. 2.15 A differential scanning calorimeter.
The sample and a reference material are
heated in separate but identical metal heat
sinks. The output is the difference in power
needed to maintain the heat sinks at equal
temperatures as the temperature rises.

Fig. 2.16 A thermogram for the protein
ubiquitin at pH = 2.45. The protein retains
its native structure up to about 45oC and
then undergoes an endothermic
conformational change. (Adapted from B.
Chowdhry and S. LeHarne, J. Chem. Educ.
74, 236 (1997).)

Figure 3: A differential scanning calorimeter
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Problem 4. The generating function trick

Consider integrals of the form

In =

∫ ∞
0

e−xxn dx (14)

We will evaluate this by exploiting a simple trick, which occurs throughout statistical me-
chanics. I will call this the generating function trick. Generalize the integral by inserting a
parameter β

In(β) =

∫ ∞
0

e−βxxn dx (15)

(a) Without doing any integrals, show that

I1(β) = −∂I0(β)

∂β
(16)

Show more generally that

In(β) =

(
− ∂

∂β

)n
I0(β) (17)

We say that I0(β) “generates” the other integrals by differentiation.

(b) Compute I0(β) and show that

In(β) =
1

β

(
n!

βn

)
(18)

Setting β = 1, we have established that

In =

∫ ∞
0

e−xxn dx = n! (19)

Problem 5. Adiabatic Expansion (Optional)

Optional problems should not be turned in. In an adiabatic expansion of an ideal gas with
constant specific heat CV , the gas in a cylinder exchanges no heat with its environment. This
often a very good idealization when the motion is relatively rapid. Consider the adiabatic
expansion from initial volume Vi to final volume Vf .

36 2 THE FIRST LAW

Comment 2.3

An integral that occurs throughout
thermodynamics is

!
b

a

dx = (lnx + constant)
b

a
= ln

b

a

1

x

Fig. 2.8 The work done by a perfect gas
when it expands reversibly and
isothermally is equal to the area under the
isotherm p = nRT/V. The work done
during the irreversible expansion against
the same final pressure is equal to the
rectangular area shown slightly darker.
Note that the reversible work is greater
than the irreversible work.

Exploration Calculate the work of
isothermal reversible expansion of

1.0 mol CO2(g) at 298 K from 1.0 m3 to
3.0 m3 on the basis that it obeys the van 
der Waals equation of state.

2 We shall see later that there is a compensating influx of energy as heat, so overall the internal energy is
constant for the isothermal expansion of a perfect gas.

does so only because pex has been set equal to p to ensure reversibility. The total work
of reversible expansion is therefore

w = −!
Vf

Vi

pdV (2.10)rev

We can evaluate the integral once we know how the pressure of the confined gas 
depends on its volume. Equation 2.10 is the link with the material covered in Chap-
ter 1 for, if we know the equation of state of the gas, then we can express p in terms of
V and evaluate the integral.

(e) Isothermal reversible expansion

Consider the isothermal, reversible expansion of a perfect gas. The expansion is made
isothermal by keeping the system in thermal contact with its surroundings (which
may be a constant-temperature bath). Because the equation of state is pV = nRT, we
know that at each stage p = nRT/V, with V the volume at that stage of the expansion.
The temperature T is constant in an isothermal expansion, so (together with n and R)
it may be taken outside the integral. It follows that the work of reversible isothermal
expansion of a perfect gas from Vi to Vf at a temperature T is

w = −nRT!
Vf

Vi

= −nRT ln (2.11)°rev

When the final volume is greater than the initial volume, as in an expansion, the
logarithm in eqn 2.11 is positive and hence w < 0. In this case, the system has done
work on the surroundings and the internal energy of the system has decreased as a 
result.2 The equations also show that more work is done for a given change of volume
when the temperature is increased. The greater pressure of the confined gas then
needs a higher opposing pressure to ensure reversibility.

We can express the result of the calculation as an indicator diagram, for the magni-
tude of the work done is equal to the area under the isotherm p = nRT/V (Fig. 2.8).
Superimposed on the diagram is the rectangular area obtained for irreversible expan-
sion against constant external pressure fixed at the same final value as that reached in
the reversible expansion. More work is obtained when the expansion is reversible (the
area is greater) because matching the external pressure to the internal pressure at each
stage of the process ensures that none of the system’s pushing power is wasted. We
cannot obtain more work than for the reversible process because increasing the external
pressure even infinitesimally at any stage results in compression. We may infer from
this discussion that, because some pushing power is wasted when p > pex, the maxi-
mum work available from a system operating between specified initial and final states
and passing along a specified path is obtained when the change takes place reversibly.

We have introduced the connection between reversibility and maximum work for
the special case of a perfect gas undergoing expansion. Later (in Section 3.5) we shall
see that it applies to all substances and to all kinds of work.

Example 2.1 Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydrochloric acid in (a) a
closed vessel of fixed volume, (b) an open beaker at 25°C.

Vf

Vi

dV

V

The temperature changes from Ti to Tf and the pressure changes from pi to pf . Use the first
law, and properties of specific heats to show that

TiV
γ−1
i = TfV

γ−1
f and piV

γ
i = pfV

γ
f (20)

Here γ = Cp/Cv. If you get stuck you may look in the lecture notes.
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Problem 6. Energy Derivatives (Optional)

Optional problems should not be turned in. The volume expansion coefficient is βp describes
how much a substance expands upon heating at constant pressure.

βp ≡
1

V

(
∂V

∂T

)
p

(21)

Strictly βp is the percent change in volume dV/V per dT . Use the First Law to show that(
∂U

∂V

)
T

=
Cp − Cv
V βp

− p (22)

Is the result consistent for an ideal gas? Explain why or why not.
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