Problem 1. Nitrogen gas

Two moles of nitrogen (N3) are in a 6-L container at a pressure of 5 bar.

Try not to look up numbers. Rather try to remember a few numbers and ratios, and
put them in context, like I did in lecture. A summary of the constants you will need in this
course is given in an Appendix. Read this appendix as you work through this problem.

Here are some things to consider: the Nitrogen atom has seven protons and seven neu-
trons, and the Ny molecule contains two nitrogen atoms. In part (b) it is useful to know
that the binding energy of an electron in the hydrogen atom is 13.6 eV, which is known as
the Rydberg constant. The Bohr model of hydrogen relates the binding enegy (BE) of an
electron in hydrogren to the Bohr radius ag ~ 0.53 A

h2
|IBE| = 5 a2 = 13.6eV (1)
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A quick reminder about what you will need about the Bohr model is given in the appendix.
You will also need the ratio of the proton to electron mass, m,/m., which was given in
lecture.

(a) Find the average kinetic energy of one molecule of the gas in electron volts and the
root-mean-square velocity in m/s. I find that the energy and rms velocity are, 0.04 eV
and 400 m/s. Is the kinetic energy %mv2 ?

(b) The bond length of N (i.e. the distance between the N atoms) is rq ~ 2ag ~ 1 A =
0.1nm. Determine the moment of inertia, and use the equipartition theorem to de-
termine the root-mean-squared angular momentum of the molecule in units of A in
terms of the mass of a nitrogen atom my, the bound length ry, the temperature, and
fundamental constants, i.e. find'
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Evaluate the result numerically. The rotations of the molecule can be considered as
classical when the angular momentum is large compared to h, otherwise the angular
motion is quantized. If the corrections to the classical description are of order ~
h/L, how good is the classical description of the motion here? What is parametric
dependence of L, on temperature?? Will the classical approximation get worse or
better as the temperature increases?

LHint: Recall that the rotational kinetic energy
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has two degrees of freedom, while the translational kinetic energy has three. Technically this is because
rotational kinetic energy (or Hamiltonian) has two quadratic forms, $Iw?2 and 171 wi. You should find about
Lims ~ 8H.
%i.e. does it grow exponentially with temperature or as a power, and if a power, then what power?


https://derek-teaney.github.io/F23_Phy306/lectures/html/A1.html

Problem 2. Partial Derivatives
Consider a particle whose height z is a function of x,y
2z =z (z,y) = 2* + 21 (3)

Now assume x = rcosf and y = rsinf. Expressed in terms of x and r the height reads
(work this out!)
z = z(z,7) = 2r* — 2 (4)

The functions z;(z,y) and z3(x,r) return the same value (at corresponding arguments)

2221($,y) :/22(]:77') (5)

but they have different functional forms. A mathematician would correctly say that they
are different functions, i.e. different maps from R? — R. The first map z; adds the square
of the first argument to twice the square of the second argument, while the second map z
takes twice the square of the second argument and subtracts the square of the first. For
a mathematician the functional form is paramount, and the mere name of the arguments
makes no difference, z3(a, b) = 20* —a?. Having two different symbols, z; and 29, for the same
physical quantity would lead to an explosion of symbols and is not practical. So, physicists
keep track of the function we are working with by indicating the arguments of the function:

2(z,y) = z1(z,y) 2(x,1) = 29(x, 1) (6)

This sneakily uses the same symbol z for two different functions and it is not clear at all
what z(a,b) means, but clear enough that z(xs,79) = 2r2 — 3.
When one takes derivatives one needs to be clearer
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Compute the following®
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Problem 3. A classical solid

A solid consists of an array of atoms in a crystal structure shown below. In a simple model

(used by Einstein at the advent of quantum mechanics) each atom is assumed to oscillate

independently of every other atom *.

In one dimension a “solid” of N atoms consists of N independent harmonic oscillators.
The Hamiltonian® of each oscillator is
2
P 1 2,2
H(z,p) = — + —muwyz 8
(r.0) = L4 S ©)
3Answers: 2z, —2z, 2x(1 + 2tan? 0), 4y, 2y, 2y(2 + cot? 8), 8x sec?() tan(6)
4In reality the motions of the atoms are coupled to each other, and the oscillation pattern of the solid,
may be found by breaking it up into normal modes.
®The Hamiltonian is as a function of position and momentum returning the energy of the particle (i.e. a
specific map R? — R).




where m is the mass of the atom. Here we have written the Hamiltonian in the “mature”
way writing noting that
2
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where wy = /ko/m is the natural oscillation frequency of the oscillator. In two dimen-
sions each atom can oscillate in the x direction and the y direction. Thus, the solid of N
atoms consists of 2N independent oscillators. The Hamiltonian (or energy as a function of
T, Y, Pu, Py) of each atom is a sum of two harmonic oscillators:

H<x7y7pxapy) :Hx+Hy (10)
21 e 1
= <% + 5mw§x2> + <ﬁ + §mw§y2> (11)

Finally in three dimensions (shown below) the solid of N atoms consists of 3N independent
oscillators as shown below, and each atom can oscillate in the x, y, or z directions. The
Hamiltonian of each atom shown in Fig. 1 consists of three harmonic oscillators:

H=H, +H,+ H. (12)
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The total Hamiltonian is a sum of the Hamiltonians of each atom.

(a) By appealing to the equi-partition theorem for a classical harmonic oscillator, deter-
mine the energy of the solid in a classical approximation. Determine the specific heat
C™ for one mole of substance in this case. You should find C{™°' ~ 25 J /mol, known
as the Dulong and Petit rule. The specific heat of a variety of solids is shown on the
next page. What does the simple model get right and wrong?

A Differential Scanning Calorimeter (DSC) is a device used to measure the specific heat of
solids accurately and quickly and costs ~ $10 K. A schematic of a DSC is shown below and
consists of a reference material with known specific heat, C’;ef. A computer supplies heat to a
reference material (typically by delivering power to a resistive heating element P = I>R) so
that the temperature of the reference material rises at a constant rate. Then, the computer
adjusts the power delivered to sample so that the temperature of the sample equals the
temperature of the reference at all times. By knowing the power delivered to the reference
and the sample, and the specific heat of the reference, the specific heat of the sample can be
determined.

(b) Assume that the reference and sample are NaCl and Diamond respectively. Using
Fig. 2, estimate the ratio of currents delivered to the reference and sample at a tem-
perature of 300 °K, I /[smPle . Assume that C), ~ Cy which is a good approximation
for solids and many liquids, and that the sample and reference materials have the same
number of moles®.

6 Answer: ~ 2
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Figure 2: Specific heats of various solids
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Fig. 2.15 A differential scanning calorimeter
The sample and a reference material are
heated in separate but identical metal heat
sinks. The output is the difference in power
needed to maintain the heat sinks at equal
temperatures as the temperature rises.

Figure 3: A differential scanning calorimeter



Problem 4. The generating function trick
Consider integrals of the form
[n:/ e "z dx (14)
0

We will evaluate this by exploiting a simple trick, which occurs throughout statistical me-
chanics. I will call this the generating function trick. Generalize the integral by inserting a
parameter 3

Lxm::/'eﬂ%ﬂdx (15)
0
(a) Without doing any integrals, show that
_ 0L(B)
R (16)
Show more generally that
8 n
L) = (~55) 106) (17)

We say that Iy(5) “generates” the other integrals by differentiation.
(b) Compute Iy(f) and show that

L= (%) (18)

Setting 8 = 1, we have established that

I, = / e fz"dr = n! (19)
0

Problem 5. Adiabatic Expansion (Optional)

Optional problems should not be turned in. In an adiabatic expansion of an ideal gas with
constant specific heat C'y, the gas in a cylinder exchanges no heat with its environment. This
often a very good idealization when the motion is relatively rapid. Consider the adiabatic
expansion from initial volume V; to final volume V.

M! \anm,V!W
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The temperature changes from 7T; to Ty and the pressure changes from p; to py. Use the first
law, and properties of specific heats to show that

TV, =T,V and pVy =p, V) (20)
Here v = C,/C,. If you get stuck you may look in the lecture notes.
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Problem 6. Energy Derivatives (Optional)

Optional problems should not be turned in. The volume expansion coefficient is 3, describes
how much a substance expands upon heating at constant pressure.

1 foV
=—| = 21
w=7 (5r) (21)
Strictly 3, is the percent change in volume dV/V per dT. Use the First Law to show that
ou C,—C,
o) =y 22)
ov ), VB,

Is the result consistent for an ideal gas? Explain why or why not.



