
1 Integrals

Bose and Fermi: ∫ ∞

0

dx
x

ex − 1
=
π2

6
(1)∫ ∞

0

dx
x2

ex − 1
=2ζ(3) ≃ 2.404 (2)∫ ∞

0

dx
x3

ex − 1
=
π4

15
(3)∫ ∞

0

dx
x4

ex − 1
=24 ζ(5) ≃ 24.88 (4)∫ ∞

0

dx
x5

ex − 1
=
8π6

63
(5)

∫ ∞

0

dx
x

ex + 1
=
π2

12
(6)∫ ∞

0

dx
x2

ex + 1
=
3

2
ζ(3) ≃ 1.80309 (7)∫ ∞

0

dx
x3

ex + 1
=
7π4

120
(8)∫ ∞

0

dx
x4

ex + 1
=
45

2
ζ(5) ≃ 23.33 (9)∫ ∞

0

dx
x5

ex + 1
=
31π6

252
(10)

Gamma Function:

Γ(z) ≡
∫ ∞

0

xz−1e−xdx (11)

with specific results

Γ(z + 1) = zΓ(z) Γ(n) = (n− 1)! Γ(1
2
) =

√
π (12)

Gaussian Integrals:

In =
1√
2π

∫ ∞

−∞
dx e−x2/2xn (13)

with specific results
I0 = 1 I2 = 0 I4 = 3 I6 = 15 (14)
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Problem 1. Neutrino Gas

A neutrino is like a photon – it is neutral, (nearly) massless, and it has two spin states. But
a neutrino is a fermion not a boson, and the modes can be either unoccupied or occupied by
a particle, with corresponding energies 0 and ϵ. Consider a gas of neutrinos at temperature
T and in a cubic box of volume V = L3.

(a) Consider a single mode in the container with single particle energy ϵ. Determine the
grand partition function for the mode and derive the Fermi-Dirac expression for the
mean number of particles in the mode:

nFD(ϵ) =
1

eβ(ϵ−µ) + 1
(15)

What are the probabilities of finding the mode unoccupied and occupied respectively?

(b) What is the energy and number of the neutrinos in the box? Explain each step carefully
and assume µ = 0.

(i) Compare the number of neutrinos in the box to the number of photons that would
be in an equivalent box at the same temperature. Explain qualitatively why there
are fewer neutrinos in the box.

You should find that the number of neutrinos is 3/4 the number of photons, but
the energy is of the neutrinos is 7/8 of the photons. Some relevant integrals are
given on the first page.

(c) Determine the average de Broglie wavelength λ ≡ h/p of the neutrino by integrating
over the momenta. (Ans. λ = 2.87 ℏc/kT ). Some relevant integrals are given on the
first page.

Problem 2. Most energetic frequency band

(a) The energy density can be written

u =

∫ ∞

0

dω
du

dω
(16)

where du/dω is the energy per frequency interval dω. Using a graphical means show
du/dω is maximum for ℏω = 2.82kT . What is the energy of a photon with this
frequency for a black body of 5340 ◦K, which is approximately the surface temperature
of the sun.

(b) The energy density can be written

u =

∫ ∞

0

dλ
du

dλ
(17)

where du/dλ is the energy per wavelength inteval dλ. Find du/dλ, and using a graph-
ical method find the wavelength λmax where du/dλ is maximum. (You should find
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hc/λmax ≃ 4.9 kBT .) What is this wavelength in nm for a black body of 5340 ◦K,
which is approximately the surface temperature of the sun. You should find that the
wavelength corresponds to a yellow color.

Problem 3. Density of single particle states

In class we classified the single-particle modes (or wave-functions) of a box by three quantum
numbers:

ψℓxℓyℓz(x, y, z) ∝ sin(kxx) sin(kyy) sin(kzz) (18)

where
k⃗ = (kx, ky, kz) =

π

L
(ℓx, ℓy, ℓz) and p⃗ = ℏk⃗ (19)

We showed that if the box is large

∞∑
ℓx=1

∞∑
ℓy=1

∞∑
ℓz=1

. . .→
∫

V d3p

(2πℏ)3
. . . (20)

which you may wish to review.

(a) Show that the number of modes g(k)dk with wavenumber magnitude k, between k and
k + dk is

g(k)dk =
1

2π2
V k2dk (21)

and determine the analogous formula in two dimensions 1. g(k) is known as the density
of single particle states (or modes) . Assume that the particles are spinless, so that

∑
modes

. . . =
∞∑

ℓx=1

∞∑
ℓy=1

∞∑
ℓz=1

. . . (22)

(b) The density of states is often expressed in terms of energy. For spinless non-relativistic
particles (with ϵ(p) = p2/2m) show that the number of modes, g(ϵ)dϵ, with energy
between ϵ and dϵ. Show that the density of states in three dimensions is

g(ϵ)dϵ =
V

4π2

(
2m

ℏ2

)3/2√
ϵ dϵ (23)

and find the analogous formula in two dimensions for non-relativistic particles2

(c) In any number of dimensions, and for relativistic and non-relativistic particles, explain
why the grand potential of a Bose and Fermi gas can be written

ΦG = ±kT
∫ ∞

0

g(ϵ) ln
(
1∓ e−β(ϵp−µ)

)
dϵ (24)

1Answer: g(k)dk = Akdk/2π.
2Ans: g(ϵ)dϵ = Amdϵ/2πℏ2.
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By differentiation of ΦG show that the number of particles is

N =

∫ ∞

0

g(ϵ)
1

eβ(ϵp−µ) ∓ 1
dϵ (25)

where the upper sign is for fermions and the lower sign is for bosons.

Determine g(ϵ) for a photon gas in three dimensions, and express the pressure of the
photon gas as an integral. You will evaluate this integral in the next problem.

The photon has two polarization states. So there are two modes for every value of k

∑
modes

= 2
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

. . . (26)

Problem 4. Entropy per Photon

You should have found the pressure (or minus the grand potential per volume) of gas of
photons. Ater recognizing that ϵ = ℏω, the result of problem 2 is

pV =
V

π2c3

∫ ∞

0

ω2kT ln
(
1− e−βℏω) dω (27)

(a) Integrate by parts to show that

p =
π2

45

(
kT

ℏc

)3

kT (28)

The necessary integrals are given below.

(b) Show that
dΦG = −SdT −Ndµ− pdV (29)

and then by differentiating the pressure (or grand potential), that

S =4
pV

T
(30)

Using the result from class for the number of photons and show that the entropy per
photon S/NkB is 3.6.

(c) Use the Gibbs-Duhem relation and the results for S and p in this problem to find the
energy density of the system, u = U/V . Check your result by comparing with the
method used in class.

Hint: What is the chemical potential of the photon gas?
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Problem 5. (Optional) Temperature of the Sun

See lecture: The intensity (energy per area per time) of sunlight on earth is I = 1kW/m2.
Show that the temperature of the sun is related to the intensity of the sunlight and the solid
angle Ω⊙ that the suns takes up in our sky:

T⊙ =

(
I

σ

π

Ω⊙

)1/4

(31)

Here σ is the Steffan Boltzmann constant and Ω is the solid angle subtended by the sun in
our sky. Using

Ω⊙ ≃ 6.8× 10−5 (32)

evaluate T⊙ numerically. I find T⊙ ≃ 5340K.
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