
138 Exercises

(13.4) A possible ideal-gas cycle operates as follows:
(i) from an initial state (p1, V1) the gas is cooled
at constant pressure to (p1, V2);
(ii) the gas is heated at constant volume to
(p2, V2);
(iii) the gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the
thermal efficiency is

1 − γ
(V1/V2) − 1

(p2/p1) − 1
. (13.41)

(You may quote the fact that in an adiabatic
change of an ideal gas, pV γ stays constant, where
γ = cp/cV .)

Fig. 13.12 The Otto cycle. (An isochore is a line of
constant volume.)

(13.5) Show that the efficiency of the standard Otto cycle
(shown in Fig. 13.12) is 1−r1−γ , where r = V1/V2

is the compression ratio. The Otto cycle is the
four-stroke cycle in internal combustion engines in
cars, lorries, and electrical generators.

(13.6) An ideal air conditioner operating on a Carnot cy-
cle absorbs heat Q2 from a house at temperature
T2 and discharges Q1 to the outside at tempera-
ture T1, consuming electrical energy E. Heat leak-
age into the house follows Newton’s law,

Q = A[T1 − T2], (13.42)

where A is a constant. Derive an expression for T2

in terms of T1, E, and A for continuous operation
when the steady state has been reached.

The air conditioner is controlled by a thermostat.
The system is designed so that with the thermo-
stat set at 20◦C and outside temperature 30◦C the
system operates at 30% of the maximum electrical
energy input. Find the highest outside tempera-
ture for which the house may be maintained inside
at 20◦C.

(13.7) Two identical bodies of constant heat capacity Cp

at temperatures T1 and T2 respectively are used
as reservoirs for a heat engine. If the bodies re-
main at constant pressure, show that the amount
of work obtainable is

W = Cp (T1 + T2 − 2Tf) , (13.43)

where Tf is the final temperature attained by both
bodies. Show that if the most efficient engine is
used, then T 2

f = T1T2.

(13.8) A building is maintained at a temperature T by
means of an ideal heat pump, which uses a river
at temperature T0 as a source of heat. The heat
pump consumes power W , and the building loses
heat to its surroundings at a rate α(T −T0), where
α is a positive constant. Show that T is given by

T = T0 +
W

2α

“

1 +
p

1 + 4αT0/W
”

. (13.44)

(13.9) Three identical bodies of constant thermal capac-
ity are at temperatures 300 K, 300 K, and 100 K.
If no work or heat is supplied from outside, what is
the highest temperature to which any one of these
bodies can be raised by the operation of heat en-
gines? If you set this problem up correctly you
may have to solve a cubic equation. This looks
hard to solve but in fact you can deduce one of
the roots [Hint: what is the highest temperature
of the bodies if you do nothing to connect them?].

(13.10) In a heat engine, heat can diffuse between the hot
reservoir and the cold reservoir and in Chapter 10
we showed that this takes place on a timescale
which scales with the square of the linear size
of the system (see Example 10.4). The mechan-
ical timescale of an engine typically scales simply
with the linear size of the engine. Explain why
this means that heat engines don’t work on very
small scales. [This is one why reason why the “en-
gines” powering biological systems, which have to
be extremely small, are not heat engines. Instead,
useful energy is extracted directly from chemical
bonds. Heat engines also often run on chemical
fuel but use the fuel to heat one of the reservoirs
and then extract work from the temperature dif-
ference thereby generated.]

Figure 1: The Otto cycle with compression ration r ≡ V1/V2.

Problem 1. Otto Cycle

The Otto cycle is shown in Fig. 1 and was discussed in class.

(a) For definiteness take a volume of 2.5 L for the volume of the four cylinders. The gas
is air which is sucked in at position one, at room temperature 300 ◦K and standard
pressure of 1 bar. Determine the number of moles of air in the cylinders .

(b) For definiteness take air as a diatomic ideal gas, and consider a compression ratio of
r ≡ V1/V2 = 8. The heat injected by burning gasoline during the ignition is 22000 J
per mole of air. Find the temperature and pressure at points 1,2,3,4.

T P (in bar)
1 300 K 1 bar
2
3
4

(c) For each of the four stages, 12, 23, 34, 41, find the W , Q, ∆U
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W Q U
12
23
34
41

(d) What is the efficiency η of the engine and compare with Carnot efficiency ηcarnot =
1 − TC/TH , where TC and TH are the lowest and highest temperatures of the engine
cycle.

(e) If the car operates at a maximum of 6000 rpm, what is the maximum horsepower of
the engine? Note it takes two turns to complete the cycle. I find that the result of this
idealized computation is low compared to a nominal engine power of ∼ 200 hp.

(f) (Optional) Show that the efficiency of the Otto cycle is 1− 1/rγ−1 where r = V1/V2 is
the compression ratio.

Hint: Work analytically (symbols not numbers). Assume that the specific heat at
constant volume is constant, so that the energy takes the form U = c0T .
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Problem 2. Gaussian Integrals

The famous Bell shaped curve (also called a normal distribution or simply a Gaussian) is
defined by the function

P (x) =
1√
2πσ2

e−(x−µ)2/2σ2

(1)

Try to memorize it.
A graph of the normal distribution is shown below. It is often applied to student grades.

In this case x represents the grade, and x− µ represents the deviation from the mean grade
µ. The probability of finding a grade between x and x+dx is supposedly given by P (x) dx.
Here σ is the standard deviation. Approximately 67% of grades are supposed to lie within
plus or minus “one sigma” of the mean, which is shown by the band in the figure below. In
my experience with student grades the bell curve is almost never realized. We will set the
mean to zero µ = 0 below, and it will often be zero in this course.
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Consider the integral of the Gaussian:

I =

∫ ∞

−∞
dx e−βx2

. (2)

Gauss invented a rather clever trick for evaluating this integral by squaring it:

I2 =

∫ ∞

−∞
dx e−βx2

∫ ∞

−∞
dy e−βy2 =

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−β(x2+y2) . (3)

Then integral can be evaluated simply by changing to Polar coordinates, dx dy = rdrdθ:

I2 =

∫ 2π

0

dθ

∫ ∞

0

rdr e−βr2 =
π

β
. (4)

And so, he found cleverly

I =

√
π

β
. (5)
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(a) By a simple change of variables use the result for I to show that∫ ∞

−∞
P (x) dx = 1 . (6)

This means that the probability density P (x) is correctly normalized.

(b) Explain why ∫ ∞

−∞
P (x)xn dx = 0 , (7)

for n odd.

(c) Consider integrals of the form

I2n =

∫ ∞

−∞
e−βx2

x2n dx . (8)

Use the generating function trick of last week to find I2 and I4.

(d) By change of variables establish the following

〈
x2
〉
≡

∫ ∞

−∞
P (x)x2dx =σ2 , (9)

〈
x4
〉
≡

∫ ∞

−∞
P (x)x4dx =3σ4 . (10)

The first of these integrals justifies calling σ the standard deviation. We will need these
integrals and concepts throughout this course.

(e) Now consider µ ̸= 0. On the same graph, sketch the Bell curve for µ = 0 and σ = 1,
µ = 1 and σ = 2, and µ = 2 and σ = 0.5 (do not use a computer!). Use the previous
results together with a change of variables to evaluate the following integrals∫ ∞

−∞
P (x;µ, σ)dx (11)∫ ∞

−∞
P (x;µ, σ)x2dx (12)

for µ = 2 and σ = 0.5.
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Problem 3. Series expansions Part I

You are expected to know the following Taylor series in addition to sin(x) and cos(x):

ex =1 + x+
1

2!
x2 +O(x3) (13)

log(1 + x) =x− 1

2
x2 +

1

3
x3 +O(x4) (14)

(1 + x)α =1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 +O(x4) (15)

1

1 + x
=1− x+ x2 +O(x3) (16)

These get me through life and I almost never revert to

f(x) ≃ f(a) + f ′(a)∆x+
1

2
f ′′(0)∆x2 + . . . (17)

where ∆x = (x− a).

(a) Show that Eq. (14) follows from Eq. (16) by integration.

(b) Show that the Taylor series (1 + x)α gives the exact result for α = 2. Here x is
considered to be a small, dimensionless, number. The O(x3) etc shows an estimate for
the size of the terms that have been dropped.

Taylor series can be combined. Here I will show the technique to order O(x5) for the
function

1

cos(x)
=

1

1− x2

2
+ x4

4!
+O(x5)

(18)

Here I have written out the Taylor series of cos(x). We now wish to expand out the denom-
inator using Eq. (16). Call the stuff in the denominator u = −x2

2
+ x4

24
+ O(x5). Use the

Taylor series
1

1 + u
= 1− u+ u2 +O(u3) (19)

Thus
1

1− x2

2
+ x4

24
+O(x5)

≃ 1 +

(
−x2

2
+

x4

24

)
+

(
−x2

2
+

x4

24

)2

+O(x5) (20)

When evaluating u2 to an accuracy of O(x5) you can (and should!) keep only the first term
of u ≃ −1

2
x2:

u2 +O(x5) =
(
−1

2
x2 + 1

24
x4
)2

+O(x5) ≃ 1

4
x4 +O(x5) (21)

This is better (and less work too) than evaluating the “exact” result:

u2 +O(x5) =
(
−1

2
x2 + 1

24
x4
)2

+O(x5) = 1
4
x4 − 1

24
x6 + 1

576
x8 +O(x5) , (22)
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which is mathematically inconsistent, since other terms of order O(x5) have already been
discarded. Indeed, there is no reason to keep the terms 1

24
x6 and 1

576
x8 after other terms of

order O(x5) have been discarded. Summarizing

1

cos(x)
≃1− u+ u2 +O(u3) (23)

≃1−
(
−x2

2
+

x4

24

)
+

(
−x2

2

)2

+O(x5) (24)

So
1

cos(x)
≃ 1 +

x2

2
+

5

24
x4 (25)

(c) Find the Taylor series of
1

ex + 1
(26)

at small x to order O(x4) by combining Taylor series. You should find

1

2
− x

4
+

x3

48
+O

(
x4
)

(27)

You should find that the term of order x2 is zero. This function describes the distri-
butions of electrons in high temperature plasmas.

(d) (Optional) We have been discussing small x. If x is large we can expand in powers of
1/x. For example:

1

x+ 1
=

1

x

(
1

1 + 1/x

)
≃ 1

x

(
1− 1

x
+O(1/x2)

)
=

1

x
− 1

x2
+O(1/x3) (28)

You will need this for the virial expansion below.

Using this technique show that

ln(1 + x) ≃ ln(x) +
1

x
+O(1/x2) (29)

Are the series expansions in Eq. (28) and Eq. (29) consistent with each other and
integration? Explain.
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Problem 4. van der Waal gas

Real gasses don’t quite obey the ideal gas law. A systematic way to account for deviations
from ideal behavior at low densities (large volumes) is the virial expansion, where the pressure
has the Taylor series expansion:

P =n kBT
(
1 + n B̂(T ) + n2Ĉ(T ) + . . .

)
, (30)

where n = N/V is the density. This can alternatively be written1 (show this for yourself!)

Pv =RT

(
1 +

B(T )

v
+

C(T )

v2
+ . . .

)
, (31)

The functions B(T ), C(T ) are called the second and third virial coefficients, respectively.
When the density of the gas is low, the third (and higher) terms can often be omitted. Here
v = V/nml is the volume per mole. The second virial coefficient for diatomic nitrogen N2 is
given below

T (K) B (cm3/mol)
100 -160
200 -35
300 -4.2
400 9.0
500 16.9
600 21.3

Table 1: Table of the second virial coefficient of diatomic nitorgen

(a) Determine the % correction to the ideal gas pressure at a temperature 200K and
atmospheric pressure due to the first term in the virial expansion (i.e. the term due to
B.) Estimate the size of higher order corrections due to C. Ans: approximately 0.2%

(b) A well motivated parametrization of a non-ideal gas is the known as the van der Waal
equations of state, which reads

P =
RT

v − b
− a

v2
, (32)

Here v = V/nml is the volume for one mole of substance (i.e. a measure of the volume
per particle).

To motivate this form consider the potential energy of a pair of atoms as a function
of distance, which is schematically shown in the figure below. The atoms are strongly
repulsive at short distance (the purple band), but attractive at large distances2.

1The coefficients B̂(T ) and Ĉ(T ) are per particle, while B(T ) and C(T ) are per mole, e.g. B(T ) =
NAB̂(T ) and C(T ) = N2

AĈ(T ).
2A common form of in inter-particle potential is given by the Leonard Jones potential

VLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(33)
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14 1 THE PROPERTIES OF GASES
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Fig. 1.13 The variation of the potential
energy of two molecules on their
separation. High positive potential energy
(at very small separations) indicates that
the interactions between them are strongly
repulsive at these distances. At
intermediate separations, where the
potential energy is negative, the attractive
interactions dominate. At large separations
(on the right) the potential energy is zero
and there is no interaction between the
molecules.

above amounts by 3.45 mol and the partial pressures are then obtained by multi-
plying the mole fraction by the total pressure (1.00 atm):

N2 O2 Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.780 0.210 0.0096

We have not had to assume that the gases are perfect: partial pressures are defined
as pJ = xJ p for any kind of gas.

Self-test 1.4 When carbon dioxide is taken into account, the mass percentages are
75.52 (N2), 23.15 (O2), 1.28 (Ar), and 0.046 (CO2). What are the partial pressures
when the total pressure is 0.900 atm? [0.703, 0.189, 0.0084, 0.00027 atm]

Real gases

Real gases do not obey the perfect gas law exactly. Deviations from the law are particu-
larly important at high pressures and low temperatures, especially when a gas is on the
point of condensing to liquid.

1.3 Molecular interactions

Real gases show deviations from the perfect gas law because molecules interact with
one another. Repulsive forces between molecules assist expansion and attractive forces
assist compression.

Repulsive forces are significant only when molecules are almost in contact: they are
short-range interactions, even on a scale measured in molecular diameters (Fig. 1.13).
Because they are short-range interactions, repulsions can be expected to be important
only when the average separation of the molecules is small. This is the case at high
pressure, when many molecules occupy a small volume. On the other hand, attractive
intermolecular forces have a relatively long range and are effective over several molecu-
lar diameters. They are important when the molecules are fairly close together but not
necessarily touching (at the intermediate separations in Fig. 1.13). Attractive forces
are ineffective when the molecules are far apart (well to the right in Fig. 1.13).
Intermolecular forces are also important when the temperature is so low that the
molecules travel with such low mean speeds that they can be captured by one another.

At low pressures, when the sample occupies a large volume, the molecules are so far
apart for most of the time that the intermolecular forces play no significant role, and
the gas behaves virtually perfectly. At moderate pressures, when the average separa-
tion of the molecules is only a few molecular diameters, the attractive forces dominate
the repulsive forces. In this case, the gas can be expected to be more compressible than
a perfect gas because the forces help to draw the molecules together. At high pressures,
when the average separation of the molecules is small, the repulsive forces dominate
and the gas can be expected to be less compressible because now the forces help to
drive the molecules apart.

(a) The compression factor

The compression factor, Z, of a gas is the ratio of its measured molar volume, Vm =
V/n, to the molar volume of a perfect gas, V o

m, at the same pressure and temperature:

Figure 2: The potential energy between two molecules as a function of their separation.

Let’s see how this modifies the ideal gas law3. First, we recognize that the particles
are not point particles, but that each has a nonzero volume b/NA (Roughly size of the
of the purple region in the figure). Accordingly the volume v in the ideal gas equation
is replaced by v − NA(b/NA); the total volume diminished by the volume b occupied
by the molecules themselves.

The second correction arises from the existence of forces between the molecules. If the
forces are attractive this will tend to reduce the pressure on the container walls. This
diminution of the pressure should be proportional to the number of pairs of molucules,
or upon the square of the number of particles per volume (1/v2); hence the second
term proportional to a in the van der Waals equation.

By making a Taylor series expansion for v ≫ b, determine the second and third virial
coefficients (B and C) for a gas obeying the van der Waals equation, in terms of b and
a.

(c) Experimental fits to real gasses with the van der Waals eos give the cooefficients a, and
b (and also c discussed below), and are shown in Fig. 3. Make a graph of the prediction
for B(T ) from the van der Waal equation of state for diatomic nitorgen and compare
with the experimental data in given in Table. 1. The plot I get is shown below in Fig. 4

For argon the minimum of the potential is of order 8meV, and occurs at a distance of rmin ≃ 1.12σ ∼ 3 Å.
3this discussion parapharases Callen

8



Figure 3:
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Figure 4: A plot comparing the van der Waal prediction to the data. The red curve is the
uses the a and b from Table. 3, while in the green line I have increased b to a somewhat
different value of b = 54.2 × 10−6m3 and a = 0.152Pam6, which gives a better description.
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(d) By considering the interaction potential between a pair of atoms shown above, give
a brief (no more than three sentences) qualitative explanation why B(T ) might be
negative at low temperatures, but positive at high temperatures.
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