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Fig. 13.12 The Otto cycle. (An isochore is a line of
constant volume.)

Figure 1: The Otto cycle with compression ration r = V; /V5.

Problem 1. Otto Cycle

The Otto cycle is shown in Fig. 1 and was discussed in class.

(a) For definiteness take a volume of 2.5 L for the volume of the four cylinders. The gas
is air which is sucked in at position one, at room temperature 300 °K and standard
pressure of 1 bar. Determine the number of moles of air in the cylinders .

(b) For definiteness take air as a diatomic ideal gas, and consider a compression ratio of
r = Vi /Vy = 8. The heat injected by burning gasoline during the ignition is 22000 J
per mole of air. Find the temperature and pressure at points 1,2,3,4.

T P (in bar)
300 K 1 bar

=W N =

(c) For each of the four stages, 12, 23, 34, 41, find the W, Q, AU



(d)

12
23
34
41

What is the efficiency n of the engine and compare with Carnot efficiency ncarmot =
1 — Te /Ty, where T and Ty are the lowest and highest temperatures of the engine
cycle.

If the car operates at a maximum of 6000 rpm, what is the maximum horsepower of
the engine? Note it takes two turns to complete the cycle. I find that the result of this
idealized computation is low compared to a nominal engine power of ~ 200 hp.

(Optional) Show that the efficiency of the Otto cycle is 1 — 1/r7~1 where r = V; /V; is
the compression ratio.

Hint: Work analytically (symbols not numbers). Assume that the specific heat at
constant volume is constant, so that the energy takes the form U = ¢,T.



Problem 2. Gaussian Integrals

The famous Bell shaped curve (also called a normal distribution or simply a Gaussian) is

defined by the function
1 2 2
— —(z—p)*/20
Ple) = 2%026 (1)

Try to memorize it.

A graph of the normal distribution is shown below. It is often applied to student grades.
In this case x represents the grade, and x — u represents the deviation from the mean grade
p. The probability of finding a grade between x and = + dx is supposedly given by P(z)dz.
Here o is the standard deviation. Approximately 67% of grades are supposed to lie within
plus or minus “one sigma” of the mean, which is shown by the band in the figure below. In
my experience with student grades the bell curve is almost never realized. We will set the
mean to zero p = 0 below, and it will often be zero in this course.

0.45

0.4

0.35

0.3

= 0.25
o 02
0.15

0.1

0.05

Consider the integral of the Gaussian:

]:/ dz e 7" . (2)

oo

Gauss invented a rather clever trick for evaluating this integral by squaring it:

[2:/ dweﬁxQ/ dyeﬁyZ:/ d:c/ dy e P +) (3)

Then integral can be evaluated simply by changing to Polar coordinates, dz dy = rdrd#@:

2m o]
I? :/ d@/ rdre = =2 (4)
0 0 5
And so, he found cleverly
T
I=./=. 5
5 (5)



(a) By a simple change of variables use the result for I to show that

/_OO Plz)dz —1. (6)

o

This means that the probability density P(z) is correctly normalized.
(b) Explain why
/ P(z)z"dz =0, (7)

o0

for n odd.

(c¢) Consider integrals of the form

I, = / e P 2 dy (8)

[e.9]

Use the generating function trick of last week to find I, and Iy.

(d) By change of variables establish the following
(z%) = /OO P(z)2*dx =0?, (9)
(z*) = /OO P(x)z*dz =30*. (10)
The first of these integrals justifies calling o the standard deviation. We will need these

integrals and concepts throughout this course.

(e) Now consider p # 0. On the same graph, sketch the Bell curve for 4 = 0 and 0 = 1,
pw=1and o0 =2 and =2 and o = 0.5 (do not use a computer!). Use the previous
results together with a change of variables to evaluate the following integrals

/_OO P(z;p,0)dx (11)

o0

/_OO P(z; p,0)r*dx (12)

[e.9]

for £ =2 and o = 0.5.



Problem 3. Series expansions Part I

You are expected to know the following Taylor series in addition to sin(x) and cos(x):

e’ =1+z+ %xz + O(z?) (13)
mg1+@:m—§#+§f+0@ﬂ (14)
(1+2)* =1+ az + a(a2,_ D2 oo 1;'(@ —2) 5 4 O (15)
1_i1_x:1—37+l‘2+0(5£3) (16)

These get me through life and I almost never revert to
1
f(@) = fla) + f@)Az+ S f"(0)Az” + .. (17)
where Az = (z — a).

(a) Show that Eq. (14) follows from Eq. (16) by integration.

(b) Show that the Taylor series (1 + x)* gives the exact result for « = 2. Here z is
considered to be a small, dimensionless, number. The O(z?) etc shows an estimate for
the size of the terms that have been dropped.

Taylor series can be combined. Here I will show the technique to order O(z®) for the

function ) |
= 2 1 (18)
cos(z) 1—Z 42 4 O(25)

Here I have written out the Taylor series of cos(z). We now wish to expand out the denom-
inator using Eq. (16). Call the stuff in the denominator u = —% + % + O(z®). Use the
Taylor series

1
1+u=1—u+u2+(9(u3) (19)
Thus )
1 22t 2 at
~ 14— — = O(x° 20
1 -4 + 5+ 0(c) +( 2+%)+( 2+%)+ ) 20

When evaluating u? to an accuracy of O(z”) you can (and should!) keep only the first term
of u~ —1z%
2

1
W+ 0%) = (2% + 2—14:B4)2 + O(2°) ~ Zx4 + O(2”) (21)
This is better (and less work too) than evaluating the “exact” result:
v+ 0(2°) = (—32° + 2—14x4)2 +0(2%) = 12" — 5;2° + £a® + O(2%), (22)



which is mathematically inconsistent, since other terms of order O(z°) have already been

discarded. Indeed, there is no reason to keep the terms

1.6 1.8
57T and et after other terms of

order O(z®) have been discarded. Summarizing

So

(c)

1

~1 — 2+ 0’ 2
cos(2) u+u”+ O(u”) (23)
2?7t 22\’
~— - - 5 24
( 2+24>+< 2) + O(x?) (24)
1 2> 5
~14+ =+ —2t 2
cos(z) * 2 * 24" (25)
Find the Taylor series of
1
26
er +1 (26)
at small z to order O(x*) by combining Taylor series. You should find
2 1wV

You should find that the term of order 22 is zero. This function describes the distri-
butions of electrons in high temperature plasmas.

(Optional) We have been discussing small x. If x is large we can expand in powers of
1/x. For example:

L=t () =L (- o) =L - Srous @

z+1 z 1+1/x) =z
You will need this for the virial expansion below.
Using this technique show that
1
In(1+ ) ~In(z) + - + O(1/2?) (29)
x

Are the series expansions in Eq. (28) and Eq. (29) consistent with each other and
integration? Explain.



Problem 4. van der Waal gas

Real gasses don’t quite obey the ideal gas law. A systematic way to account for deviations
from ideal behavior at low densities (large volumes) is the virial ezpansion, where the pressure
has the Taylor series expansion:

P =nkgT (1 +n B(T) +n2C(T) + .. ) (30)
where n = N/V is the density. This can alternatively be written' (show this for yourself!)
B(T T
o (1250 €D o
v v

The functions B(T'), C(T) are called the second and third virial coefficients, respectively.
When the density of the gas is low, the third (and higher) terms can often be omitted. Here
v = V/ny is the volume per mole. The second virial coefficient for diatomic nitrogen Ny is
given below

T (K) | B(cm?/mol)
100 -160
200 -35
300 -4.2
400 9.0
500 16.9
600 21.3

Table 1: Table of the second virial coefficient of diatomic nitorgen

(a) Determine the % correction to the ideal gas pressure at a temperature 200K and
atmospheric pressure due to the first term in the virial expansion (i.e. the term due to
B.) Estimate the size of higher order corrections due to C. Ans: approximately 0.2%

(b) A well motivated parametrization of a non-ideal gas is the known as the van der Waal
equations of state, which reads

_ RT a

Tu—b  0?
Here v = V/ny, is the volume for one mole of substance (i.e. a measure of the volume
per particle).

(32)

To motivate this form consider the potential energy of a pair of atoms as a function
of distance, which is schematically shown in the figure below. The atoms are strongly
repulsive at short distance (the purple band), but attractive at large distances”.

'The coefficients B(T)Aand C(T) are per particle, while B(T) and C(T) are per mole, e.g. B(T) =
NB(T) and C(T) = N3C(T).
2A common form of in inter-particle potential is given by the Leonard Jones potential

i) = e[ (2)" - (2)'] (33)

r T
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Figure 2: The potential energy between two molecules as a function of their separation.

Let’s see how this modifies the ideal gas law®. First, we recognize that the particles

are not point particles, but that each has a nonzero volume b/N4 (Roughly size of the
of the purple region in the figure). Accordingly the volume v in the ideal gas equation
is replaced by v — N4(b/N4); the total volume diminished by the volume b occupied
by the molecules themselves.

The second correction arises from the existence of forces between the molecules. If the
forces are attractive this will tend to reduce the pressure on the container walls. This
diminution of the pressure should be proportional to the number of pairs of molucules,
or upon the square of the number of particles per volume (1/v?); hence the second
term proportional to a in the van der Waals equation.

By making a Taylor series expansion for v > b, determine the second and third virial
coefficients (B and (') for a gas obeying the van der Waals equation, in terms of b and
a.

(c) Experimental fits to real gasses with the van der Waals eos give the cooefficients a, and
b (and also ¢ discussed below), and are shown in Fig. 3. Make a graph of the prediction
for B(T) from the van der Waal equation of state for diatomic nitorgen and compare
with the experimental data in given in Table. 1. The plot I get is shown below in Fig. 4

For argon the minimum of the potential is of order 8 meV, and occurs at a distance of 7y, ~ 1.120 ~ 3A.
3this discussion parapharases Callen



TABLE 3.1
Van der Waals Constants and Molar Heat
Capacities of Common Gases®

Gas a (Pa-m®) b(10~ °m’) c

He 0.00346 23.7 1.5
Ne 0.0215 17.1 1.5
H, 0.0248 26.6 25
A 0.132 302 1.5
N, 0.136 38.5 25
o, 0.138 32.6 25
CO 0.151 399 2.5
co, 0.401 427 3.5
N,0 0.384 442 35
H,O 0.544 305 31
Cl, 0.659 56.3 28
SO, 0.680 56.4 35

¢ Adapted from Paul S Epstein, Texthook of Thermodynanrucs,
Wiley, New York, 1937.

Figure 3:
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Figure 4: A plot comparing the van der Waal prediction to the data. The red curve is the
uses the a and b from Table. 3, while in the green line I have increased b to a somewhat
different value of b = 54.2 x 107%m? and a = 0.152 Pam®, which gives a better description.
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(d) By considering the interaction potential between a pair of atoms shown above, give
a brief (no more than three sentences) qualitative explanation why B(7) might be
negative at low temperatures, but positive at high temperatures.
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