
Problem 1. Energy In Combustion

Note: This is one of the few places where one needs to work rather precisely to see
the physics point. My rule of thumb is that an Avagadros number times an electron volt is
100 kJ. But, here should use a more accurate evaluation, NA ·eV = 96.5 kJ. In evaluating the
numbers below you should keep to an accuracy of one part in a thousand, R = 8.314 J/K·mol.

(a) (Optional) Repeat the argument presented in class for the equation

dH = d̄Qin + V dp (1)

where H = U + pV represents the enthalpy. Enthalpy is particularly useful when the
pressure is constant, leading to

dH = d̄Qin (2)

(b) Consider the combustion of Hydrogen gas:

H2(g) +
1

2
O2(g) ↔ H2O(l) . (3)

resulting in the formation of liquid water vapor. Tables of enthalpies for reactions are
available in many books.

(i) Look up the enthalpy of the products and reactants at 298 ◦K and standard pres-
sure1 in the accompanying data table. Determine the change in enthalpy, ∆H
,
for each mole of H2O produced.

(ii) Consider the reactants as ideal gasses, and treat the liquid product H2O as having
negligible volume compared to the gasses. Calculate the heat released during the
combustion and the change in internal energy, ∆U
 = Ufinal − Uinitial, per mole.
(Ans: Qout = 285.8 kJ and ∆U = −282.1 kJ)

(c) Consider the reaction at
H(g) + H(g) → H2(g) (4)

at NTP, which is accompanied by a large release of heat. Using the enthalpy data
tables, determine the energy of a bond between the two atoms in a H2 molecule in eV.
(Ans: ∆U = −433.5 kJ and ∆ = 4.48 eV.)

Hint: First use the enthalpy data tables to determine the enthalpy change and heat re-
leased during the reaction. Use this to find ∆U for the reaction, treating all components
as ideal gasses. The energy of a single H2 molecule is its kinetic energy (translational
and rotational) and its potential (or binding) energies:

EH2 =KE + PE = KE−∆ (5)

1This temperature and pressure is the so-called Normal Temperature and Pressure (NTP) and denoted
with a circle, i.e. T
, p
 and H
 denote the temperature, pressure, and enthalpy at NTP.
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Here PE = −∆ is the binding energy (i.e. the bond energy) of the two atoms. (The
negative sign indicates that the energy is lower when the two atoms are bound compared
to when they are unbound. ∆ is a positive value and is what we are trying to find.)
The total energy U is the sum of kinetic and potential energies of the atoms. Use what
we know about the kinetic energy of ideal gasses (both the mono-atomic and diatomic
cases) to relate ∆U for one mol of H2 produced to ∆.
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Problem 2. Combinatorics and The Stirling Approximation

(a) Consider one mole of atoms laid out in a row. The atoms can be in two states, a
ground state, and an excited state. 1/3 of them are in the excited states. Using the
Stirling approximation, show that the number of configurations with this number of
excited states is approximately

Ω = 101.67×1023 (6)

For instance, if the number of atoms is five, and the number of excited atoms (shown
by the black circles) is 2, then two possible configurations are shown below.

(b) Now repeat the calculation, but work with symbols rather than numbers. Assume
there are N atoms laid out in a row. Assume that N1 of them are in the ground state,
and N2 are in the excited state, with N1 +N2 = N . Show that the log of the number
of configurations is

lnΩ =−
∑
i=1,2

Ni ln(Ni/N) (7)

=N
∑
i=1,2

−Pi lnPi (8)

In the last step we have recognized that the P1 = N1/N is the probability that an
atom will be in the ground state, and P2 = N2/N is the probability that an atom will
be in the excited state.

Discussion: The log of the number of configurations lnΩ is known as the entropy of
the system2. Then entropy per site, i.e. lnΩ/N , is given by

lnΩ

N
=

∑
i

−Pi lnPi (9)

which is known as the Shannon formula for the entropy of a probability distribution.
The importance of these things will become clearer as the course progresses.

2Actually lnΩ is the entropy up to a conventional constant. For historical reasons the entropy is defined as
kB lnΩ, with kB the Boltzmann constant. Similarly the entropy per site is defined only up to a conventional
constant and later in the course we will respect tradition and take −kB

∑
i Pi lnPi as the entropy per site.
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Problem 3. Parametrizing the EOS

The pressure as a function of temperature an volume, p(T, V ), or equivalently the volume as
a function of temperature and pressure V (T, p), is an important physical observable. Recall
that its changes are parameterized by the measurables βp and κT . Similarly

Consider an ideal gas at temperature T with N particles

(a) Explain the physical meaning of the thermal expansion coefficient βp and isothermal
compressibility κT , and compute them for an ideal gas.

The first items only involved the EOS, p(T, V ). The next items also involves the energetics
U(T, V ), so the specific heat and adiabatic index play a role. Assume that U = c0T with c0
a constant

(b) Write down c0 for mono-atomic and diatomic ideal gasses, the specific heats Cp and
Cv for these gasses, and the adiabatic index γ for these gasses.

(c) For for a general substance (and not necessarily an ideal gas) the specific heats Cp and
CV are are related by a formula which we will prove in full generality only later:

Cp =CV +
V Tβ2

p

κT

. (10)

For an ideal gas we proved the following special case of this formula:

Cp = CV +NkB . (11)

Or, for one mole of substance

C1ml
p = C1ml

V +R . (12)

Show that Eq. (12) follows from Eq. (10) together with the results from parts (a).

(d) The adiabatic compressibility κS is the defined by3

κS ≡ −1

V

(
∂V

∂p

)
adiab

(14)

This “adiab” means that as we change the pressure, the volume and temperature
change, so that no heat flows, d̄Q = 0. Show for an ideal gas that

κS =
κT

γ
(15)

We will show later that this result is not limited to an ideal gas.

3The suffix S means adiabatic, d̄Q = 0. We will see that d̄Q is related to the change in entropy S,
dS = d̄Q/T . So S suffix means at fixed entropy.

κS ≡ −1

V

(
∂V

∂p

)
S

≡ −1

V

(
∂V

∂p

)
adiab

(13)
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(e) As discussed in class, the speed of sound is related to the compressibility4

cs =

√
BS

ρ
(16)

where the bulk modulus

BS ≡ −V

(
∂p

∂V

)
adiab

≡ 1

κS

(17)

serves as a kind of spring constant for the material, and ρ is the mass per volume. Air
is made of diatomic molecules, primarily (78%) diatomic nitrogen N2. Determine the
speed of sound of N2 gas at 20oC treating using only the ideal gas constant R and
the fact that a nitrogen atom consists of 7 protons and 7 neutrons. Compare with the
nominal value for the speed of sound in air. You should find favorable agreement.

(f) The frequency of the tuning note (A440) in the orchestra is 440 Hz. Explain qualita-
tively why it is the adiabatic compressibility κS, and not the isothermal one κT which
is relevant for the speed of sound, by comparing the time scales of oscillation with a
typical time scale for heat conduction. Consider the following questions. When you
turn on the heat on a frying pan, how long does it take to get hot? How does this time
scale compare to the time it takes for sound to propagate across several meters.

4I will not derive this. A good derivation at your level is given here. Unfortunately, this derivation uses
the symbol κ for BS , which for us (and indeed almost everyone) is 1/κS !
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Problem 4. Probability

In a short computer program, I produced 1000 random numbers generated uniformly between
[0, 1]. I made a histogram5 of these numbers which is shown in Fig. 1(a). (Histograms can be
made with excel, google sheets, Mathematica, python, . . . ) The first seven random numbers
produced by the program are shown in the first column of the table below. For each random
number I applied two functions y1(x) = 1/x and y2(x) = − log(x), which are shown in the
second and third columns respectively. I made histograms of y1 and y2 and these are shown
in Fig. 1(b) and (c).

x y1 = 1/x y2 = − log(x) y3(x) =?
0.536581 1.86365 0.622537 0.812603
0.895263 1.11699 0.110638 0.963793
0.0470624 21.2484 3.05628 0.361042
0.537013 1.86215 0.621732 0.812821
0.752013 1.32976 0.285002 0.909372
0.80406 1.24369 0.218081 0.929886
0.382136 2.61687 0.961978 0.725670

. . . . . . . . . . . .

(a) Check the second and third column in the first row of the table shown above.

(b) Explicitly find three continuous functions which approximately describes the histograms
in Fig. 1 (a), (b) and (c). The first function is a only a function of x, the second is
a only a function y1, and the third is a only a function only of y2. Explain both the
shape and the magnitudes of your function. I have drawn the functions I am looking for
on top of the histograms. How are your functions related to the probability densities
P (y1) ≡ dP/dy1 and P (y2) ≡ dP/dy2?

Hint: You can check your work by plotting your functions and see if they look like
those shown in the figure, agreeing both in shape and in magnitude.

(c) Given a random number generator producing uniform numbers between 0 and 1, how
could you produce random numbers with probability distribution dPy = 3y2dy with
y ∈ [0, 1]?

Hint: Try to come up with a map y(x) so that P (x)dx = dx. I applied this map to
each xi, denoted y3(x), recording the results in the fourth column of the table given
above. You can check that you have the right map by checking the numbers in this
column. A histogram of y indeed produces the right distribution, Fig. 1(d).

5Wikipedia provides a quick review of histograms. Briefly a histogram counts the number of events or
outcomes (i.e. rows in the table of this problem) with xi between x and x+∆x. The bin width is ∆x.
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Figure 1: Top Row (a) and (b): Histogram of x and y1. Bottom Row (c) and (d):
Histogram of y2 and y3

7



Problem 5. A reminder on Jacobians

Recall that if I have a probability distribution

dPx = P (x)dx , (18)

and I want to change variables to a new variable u(x), then the probability distribution for
u is

dPu = P (x(u))

∣∣∣∣dxdu
∣∣∣∣ du . (19)

So the probability densities are arelated by

P (u) = P (x(u))

∣∣∣∣dxdu
∣∣∣∣ . (20)

We will have many physical examples of this in homework, e.g. the probability of a particle
having a given velocity vs. the probability of a particle having a given energy.

The change of variables generalizes to two and higher dimensions. Suppose we have a
probability density in x, y describing a particle’s position:

dPx,y = P (x, y) dx dy . (21)

For definiteness consider the gaussian

dPx,y =
1

2πσ2
exp

(
− x2

2σ2 − y2

2σ2

)
dxdy , (22)

shown in Fig. 2. It seems more natural here to use polar coordinates, defining x = r cos θ
and y = r sin θ with r ∈ [0,∞] and θ ∈ [0, 2π] shown in the figure.

In analogy with the 1D case, for a change of variables x(r, θ) and y(r, θ), the probability
of finding a particle with radius between r and r + dr and angle θ between θ and θ + dθ is

dPr,θ = P (x(r, θ), y(r, θ))

∣∣∣∣∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣∣∣∣∣ drdθ . (23)

The double bars mean determinant and then absolute value of the Jacobian matrix, which
is defined as a matrix with all the possible derivatives of the map (r, θ) → (x, y):6

∂(x, y)

∂(r, θ)
≡

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
. (24)

So the densities are related by

P (r, θ) = P (x, y)

∣∣∣∣∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣∣∣∣∣ , (25)
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Figure 2: A probability distribution which has no dependence on θ.

where it is understood that x = r cos θ and y = r sin θ.

We say that the “volume elments” are related by the Jacobian determinant:

dx dy =

∣∣∣∣∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣∣∣∣∣ drdθ = r dr dθ , (26)

where it is understood that these expressions are meant to be integrated over.

(a) Compute the Jacobian matrix and find its determinant. Explicitly determine dPr,θ =
P (r, θ)drdθ for the probability distribution in Eq. (22). By marginalizing over (aka
integrating over) the unobserved coordinate, determine dPr = P (r)dr and dPθ =
P (θ)dθ, that is to say the probability distribution for r (without regards to θ) and the
probability distribution for θ (without regards to r) ?

(b) Let’s understand the Jacobian. The columns of the Jacobian form vectors

er ≡
∂x

∂r
ı̂+

∂y

∂r
ȷ̂ =

∂R

∂r
, (27)

eθ ≡
∂x

∂θ
ı̂+

∂y

∂θ
ȷ̂ =

∂R

∂θ
, (28)

where R = xı̂ + yȷ̂ is the position vector of the particle. The determinant of two
vectors is the area of the parallelogram spanned by the two vectors7. Compute the

6Sometimes people use ∂(x, y)/∂(v, θ) to mean the determinant of the Jacobian matrix, rather than just
the matrix itself. Our book uses this notation, as is described in appendix C.

7See for instance The Kahn video.
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Figure 3: Cylindrical coordinates in two dimensions.

vectors8 er dr and eθ dθ, and the norms of the these vectors |erdr| and |eθdθ| and
show that the vectors are orthogonal in this case. In a sentence or two, use the word
“displacement” to explain the physical meaning of the vectors erdr and eθdθ and their
lengths by referring to Fig. 3. Note that the volume element is |erdr||eθdθ| since the
vectors are orthogonal.

Consider the probability distribution

dPx,y =
1

6π
e(−5x2+2xy−2y2)/18dx dy (29)

A contour plot of this probability distribution is shown in Fig. 4(a). Consider the change of
variables

x =(u+ v) (30)

y =(−u+ 2v) (31)

The u, v coordinates are better adapted to the probability distribution and are shown in
Fig. 4(a).

(c) Compute the Jacobian of the map and compute the probability distribution

dPu,v = P (u, v)du dv (32)

Your result should be qualitatively consistent with the contour plot of the result shown
in Fig. 4(b).

8I am asking for the vector er times an (arbitrary) small increment in radial coordinate dr. Weighting er
and eθ by the corresponding coordinate increments dr and dθ gives these vectors a simple geometric meaning
in terms of displacements, which I hope you will begin to understand.
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Figure 4: (a) A contour plot of the probability distribution P (x, y) with lines of constant
u and v indicated. Specific lines of constant u and v are indicated by the white lines. (b) a
contour plot P (u, v) with corresponding lines of constant u and v. The distribution becomes
circular for this change of variables.

Show that the probability of finding u in an interval between u and u+ du is

dPu = P (u)du with P (u) =
1√
2π

e−
1
2
u2

. (33)

(d) Write down the column vectors, eu and ev, of the Jacobian of the map (u, v) 7→ (x, y).

Now interpret these vectors: At the origin of Fig. 4(b), sketch the unit coordinate
displacement vectors giving ∆u = 1 and ∆v = 1. At the origin of Fig. 4(a), sketch the
corresponding the dispacement vectors eu∆u and ev∆v.
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