
Problem 1. Central Limit Theorem and Random Walk

In a random walk, a collegiate drunkard starts at the origin and takes a step of size a, to
the right with probability p and to the left with probability 1− p.

(a) Take p = 1/2, i.e. equal probability of right and left steps. Determine the probability
of the drunkard having position X, i.e. P (X), after three steps. Plot P (X) where
X can be one of X/a = 0,±1,±2,±3. Note how your graph begins to approach a
Gaussian after just three steps1

(b) Now keep p general. What is the mean and variance variance in the drunkard’s position
X after one step, and after two steps? You can check your reasoning by doing the next
part.

(c) After n steps (with n ≫ 1) find his mean position ⟨X⟩ , and the std. deviation in his
position σX =

√
⟨δX2⟩. Check your result by comparing with the figure below

-�� -�� -� � � �� ��
����

����

����

����

����

����

����

Figure 1: Probability of our drunkard having position X after n = 10 steps (the blue
points). Of course after 10 steps the drunkard will be between −10 . . . 10, and it is easy
to show that he will be only at the even sites, i.e. −10,−8,−6, . . . 10. For p = 0.6, I find
⟨X⟩ = 2.0. Twice the std deviation, 2σX , is shown in the figure and is about six in this case.
The orange curve is a gaussian (a.k.a the “bell-shaped” curve) approximation discussed in
class and approximately agrees with the points – this is the central limit theorem. Recall
that the central limit theorm says that if the number of steps n is large, the probability of
X (a sum of n independent events) is approximately P (x) dX ∝ exp(−(X − ⟨X⟩)2/2σ2

X).
Evidently the gaussian approximation works well already for n = 10.

Hint: X is a sum N independent events xi where xi = ±a. Use results from class on
the probability distribution of a sum of independent events.

1The graph should be symmetric. You should find P0 = 0, P±1 = 3
8 , P±2 = 0, P±3 = 1

8 . Your graph
should look something like the figure below but symmetric around the orgigin.
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Problem 2. Big numbers and the Shannon entropy

Here NA = 6.0× 1023

(a) Consider a number
eS = 100000eNA (1)

and an approximation to it

eS = 100000 eNA ≃ eNA . (2)

What is the percent error in S made by this approximation?

(b) Consider the approximation

eS = eNA + e1.001NA ≃ e1.001NA . (3)

What is the percent error in S made by this approximation? It may be helpful to recall
the Taylor series of the logarithm discussed in previous homework.

(c) Suppose that I have a subsystem which can be in three states, s = 1, 2, 3, with proba-
bilities ps. If I lay down N subsystems drawn from the probability distribution ps (see
Fig. 2 for two concrete examples), then for N large I will have approximately N1 ≃ Np1
subsystems in state 1, N2 ≃ Np2 subsystems in state two, and N3 ≃ Np3 subsystems
in state three.

The total number of configurations with specified N1, N2 and N3 that can be generated
during this process is Ω. We study its logarithm S ≡ lnΩ. We showed in class and in
prior homework that

S ≡ lnΩ = ln

(
N !

N1!N2!N3!

)
≃ NS1 S1 ≡

∑

s

−ps ln ps (4)

where S1 is known as the Shannon entropy. Thus Ω grows exponentially in the number
of subsystems

Ω ≃ eNS1 (5)

This formula generalizes straightforwardly to subsystems with more than three states.

(i) What is the Shannon entropy for the probability distribution leading to Fig. 2(b))?
How would this change if my subsystem had two states that are equally likely, or
six states that are equally likely?

(ii) Compute the Shannon entropy for the probability distribution leading to Fig. 2(a)2.
By comparing Fig. 2(a) and Fig. 2(b) and with no more than a sentence or two,
try to qualitatively explain why your result in (ii) is smaller than the case of equal
probability discussed in (i).

2Answer: 0.9
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Figure 2: (a) A configuration generated by laying down 400 subsystems, with probabilities
p1 =

1
8
(red), p2 =

2
8
(blue) and p3 =

5
8
(green). lnΩ is the number of ways you can shuffle

around the red, blue, and green and get a new configuration. (b) A configuration generated
by laying down 400 subsystems, with probabilities p1 = 1

3
(red), p2 = 1

3
(blue) and p3 = 1

3

(green).

(iii) Suppose that the subsystem actually describes two independent subsystems A and
B, ps ≡ pAB

s . For instance, system A can be in states a = 1, 2 with probability
pAa , and system B can be in states b = 1, 2, 3 with probability pBb . The probability
to be in a state labeled by a and b is

pAB
s = pAa p

B
b (6)

where the six possible states labeled by s ≡ (a, b) are

s ≡ (a, b) ∈ {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} (7)

Show that entropy of the total subsystem is the sum of the entropy of A and B

SAB
1 = SA

1 + SB
1 (8)

where
SA
1 =

∑

a

−pAa ln pAa and SB
1 =

∑

b

−pBb ln pBb (9)

Problem 3. Counting

Consider 400 atoms laid out in a row. Each atom can be in one of two states a ground
state with energy 0 and an excited state with energy ∆. Assume that 100 of the atoms are
excited, so the total energy is U = 100∆.
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(a) Show that there are e225 configurations, called microstates, for this energy U . One
microstate is shown below.

(b) Suppose that we make a partition of the energy so that the first 200 atoms have an
energy of 80∆, and the next 200 atoms have an energy of 20∆ (see below). The
terminology here is that we have specified the “macrostate” (i.e. the 80/20 split),
leaving the microstates (exactly which atoms are up and down) to be further specified.
How many microstates are there with this macrostate? One microstate for this 80/20
split macrostate is shown below3
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Figure 3: (a) A microstate where the energy is not partitioned. (b) a microstate where the
energy is partitioned – 80% on the top and 20% on the bottom.

3Answer: e200.
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Problem 4. The Gamma function

The Γ(x) function can be defined as4

Γ(x) ≡
∫ ∞

0

due−uux−1 =

∫ ∞

0

du

u
e−uux (10)

A plot of Γ(x) is shown below. Γ(n) provides a unique generalization of (n − 1)! when n
is not an integer and even negative or complex. It will come up a number of times in this
course and is good to know. C.2 The Gaussian integral 465

Fig. C.1 The gamma function Γ(n)
showing the singularities for integer val-
ues of n ≤ 0. For positive, integer n,
Γ(n) = (n − 1)!.

a bell. It turns up in many statistical problems, often under the name
of the normal distribution. The integral of a Gaussian is another
extremely useful integral:

∫ ∞

−∞
e−αx2

dx =

√
π

α
. (C.3)

Fig. C.2 A Gaussian e−αx2
.

• It can be proved by evaluating the two-dimensional integral

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−α(x2+y2) =

(∫ ∞

−∞
dx e−αx2

)(∫ ∞

−∞
dy e−αy2

)

= I2, (C.4)

where I is our desired integral. We can evaluate the left-hand side
using polar coordinates, so that

I2 =

∫ 2π

0

dθ

∫ ∞

0

dr re−αr2

, (C.5)

which with the substitution z = αr2 (and hence dz = 2αr dr) gives

I2 = 2π × 1

2α

∫ ∞

0

dz e−z =
π

α
, (C.6)

and hence I =
√

π/α is proved.

• Even more fun begins when we employ a cunning stratagem: we
differentiate both sides of the equation with respect to α. Because

Figure 4: Appendix C.2 of our book

(a) Using notions of generating functions, briefly explain why Γ(n) = (n−1)! for n integer.

(b) Prove that Γ(1
2
) =

√
π. Hint: try a substitution y =

√
u.

The following identity is needed below.

Γ(x+ 1) = xΓ(x) , (11)

or
x! = x · (x− 1)! , (12)

but now x is a real number, and x! is defined by Γ(x+ 1).

(c) (Optional. Dont turn in) Use integration by parts to prove the identity in Eq. (11).

4I like to write Γ(x) =
∫∞
0

du
u e−uux, which makes the x is more explicit. Also the measure du/u is

invariant under a homogeneous rescaling, e.g. under change of variables u → u′ = λu we have du′/u′ = du/u.
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(d) Use the results of this problem to show that Γ(7
2
) = 15

√
π/8. What is the result

numerically? 7/2 is between two integers. Show that Γ(7/2) is between the appropriate
factorials related to those two integers?

(e) The “area” (i.e. circumference) of a “sphere” in two dimensions (i.e. the circle) is 2πr.
The area of a sphere in three dimensions is 4πr2. A general formula for the area of the
sphere in d dimensions is derived in the book is (the proof is simple, using what we
know)

Ad(r) =
2πd/2

(d
2
− 1)!

rd−1 =
2πd/2

Γ(d/2)
rd−1 (13)

Show that this formula gives the familiar result for d = 2 and d = 3.
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Problem 5. Two State System

Consider an array of N atoms forming a medium, with each atom possessing two energy
states: a ground state with energy 0 and an excited state with energy ∆.

(a) Determine the temperature at which the number of excited atoms reaches N/4.

(b) (Optional) Calculate the mean energy ⟨ϵ⟩. Sketch ⟨ϵ⟩ /kT as a function of ∆/kT .
Explain both the high and low temperature limits qualitatively.

(c) (Optional) Show that the variance of energy ⟨(δϵ)2⟩ for an individual atom takes the
form

〈
(δϵ)2

〉
=

∆2e−β∆

(1 + e−β∆)2

Graph ⟨(δϵ)2⟩
(kT )2

as a function of ∆
kT
.

(d) (Optional) Suppose you have a collection of 16 such atoms (shown below). Calculate
the average values of ⟨E⟩, ⟨(δE)2⟩ and ⟨E2⟩, where E represents the total energy of all
16 atoms. What approximately is the probability distribution for the energy E?
Hint: Think about how the central limit theorem applies here.
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