
Problem 1. Logarithmic Derivatives

The percent change in x is dx/x. Thus it is common to see

x
dy

dx
(1)

which is the change in y per percent change in x. This is known as a logarithmic derivative
with respect to x since

x
dy

dx
=

dy

d lnx
(2)

Similarly the percent change in y per change in x is

1

y

dy

dx
=

d ln y

dx
(3)

Logarithmic derivatives appear frequently in the course and recognizing this can help.
Let y ∝ xk with k a real number. Show that the percent change in y is proportional to

the percent change in x
dy

y
= k

dx

x
(4)

Show also

x
∂

∂x
= k y

∂

∂y
(5)

Briefly answer:

(i) With β = 1/kT , relate

T
∂

∂T
and β

∂

∂β
(6)

(ii) If E = p2/2m, how is dE/E related to dp/p?

(iii) Show that if Z(x) = Z1(x)Z2(x) then the percent change in Z with x is a sum of the
percent changes:

1

Z

dZ

dx
=

1

Z1

dZ1

dx
+

1

Z2

dZ2

dx
(7)
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Problem 2. Basics of Partition Functions

Important!

Consider a quantum mechanical system with energy levels ϵi with i = 1, 2, . . . n. Recall
the definition of the partition function

Z(β) =
∑
i

e−βϵi

Z is a the normalization constant so that the probability of being in the r-th state

Pr =
1

Z(β)
e−βϵr (8)

is correctly normalized ∑
i

Pi = 1 (9)

The results of this problem also apply to a classical particle where (in 1D for simplicity) the
single particle partition function reads

Z1(β) =

∫
dxdp

h
e−βϵ (10)

(a) Show that the mean energy can be found if you know Z(β) via the formula:

⟨ϵ⟩ = − 1

Z(β)

∂Z

∂β
(11)

Show also that 〈
ϵ2
〉
=

1

Z

(
− ∂

∂β

)(
− ∂

∂β

)
Z =

1

Z

∂2Z

∂β2
(12)

What is ⟨ϵm⟩ in terms of the derivatives of Z(β)?

From this exercise you should realize that the partition function is essentially the
generating function for the probability distribution in Eq. (8). Indeed, the partition
function “generates” averages of the form, ⟨ϵm⟩, by differentiating m times with respect
to the parameter −β.

(b) Consider the two state system with energy 0 and ∆ discussed two homeworks ago.
Compute the partition function, and then compute ⟨ϵ⟩ and ⟨ϵ2⟩ using the methods of
this problem, and compare with the methods of the previous homework.

(c) Although it is not obvious at this level, it is generally better to work with the logarithm
of Z(β), i.e. lnZ(β). Show that the mean and variance of the energy are determined
by the derivatives of lnZ

⟨ϵ⟩ =− ∂ lnZ(β)

∂β
(13)

〈
(δϵ)2

〉
=
∂2 lnZ(β)

∂β2
= −∂ ⟨ϵ⟩

∂β
(14)

In particular note, that the mean ⟨ϵ⟩ determines the variance.
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(d) Now consider a hunk of material consisting of N two level atoms with energy levels 0
and ∆. Find the total energy U(T ) of the system at temperature T . Use the results
of this problem to show quite generally that the specific heat CV of the material is
related to the variance in the energy of an individual atom

CV = Nk

[⟨(δϵ)2⟩
(kT )2

]
(15)

Sketch CV /R for one mole of substance, versus ∆/kT and comment in comparison to
last weeks homework.

(e) Finally consider a classical particle in a harmonic potential from last week.

H(x, p) =
p2

2m
+

1

2
mω2

0x
2 (16)

Compute the partition function recognizing the similarities with part (a) of the problem
from last week. Compute the average energy ⟨ϵ⟩ using Eq. (13). Does your answer
agree with last week’s Homework and the equipartition theorem?
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Problem 3. Probability distribution of a Quantum Harmonic
Oscillator

Consider a quantum harmonic oscillator in one dimension interacting with a thermal envi-
ronment. This could be, for example, a single atom attached via a spring-like bond to a
large stationary molecule. The vibrational frequency of the oscillator is ω0 =

√
ksp/m.

Recall that the energy levels of a quantum harmonic oscillator are

ϵn =
(
n+ 1

2

)
ℏω0 (17)

with n = 0, 1, 2, . . .∞. Here ℏω0 is one discrete unit of quantized vibrational energy. The
integer n is known as the vibrational quantum number – the larger is n, the larger is the
energy (in units of ℏω0), and the more the atom is vibrating. For large n the energy is nearly
continuous and the motion can be treated classically. A plot of the energy levels and the
wave-functions are shown in Fig. 1.

Since only differences in energies are physically important, we can shift what we call
“zero energy” downward by 1

2
ℏω0 and write the energy levels as

ϵn = nℏω0 (18)

The probability to find the oscillator in the n-th vibrational state is

Pn =
1

Z
e−ϵn/kT =

1

Z
e−nℏω0/kT (19)

−4 −2 0 2 4
q

En = 1
2h̄ω0n = 0

En = 3
2h̄ω0n = 1

En = 5
2h̄ω0n = 2

En = 7
2h̄ω0n = 3

En = 9
2h̄ω0n = 4

En = 11
2 h̄ω0n = 5

En = 13
2 h̄ω0n = 6

ψ(q)

Figure 1: Energy levels ϵn ≡ En = (n+ 1
2
)ℏω0 and wave functions for the first six levels of

the quantum harmonic oscillator.
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Figure 2: Probability for the oscillator to have n quanta of vibrational energy ℏω0 for different
values ℏω0/kT .

where Z is a normalizing constant. Z is known as the partition function in English, and the
letter Z is short for Zustandsumme in German (meaning “sum over states”).

(a) By normalizing the probability Pn, show that Z =
∑∞

n=0 e
−nβℏω0 . I find the German

name descriptive, because, as you see, it is a “sum over states”.

(b) Noting that e−nℏω0/kT = un with u = e−ℏω0/kT , evaluate the sum, and determine the
explicit form for Z and Pn. A plot of Pn for a variety of ℏω0 is shown in Fig. 2. Describe
qualitatively what this plot is telling you physically. For each of the three curves in
Fig. 2, give a rough graphical estimate for the mean vibrational quantum number.

You should find
Pn = e−nℏω0/kT (1− e−ℏω0/kT ) (20)

(c) The first vibrational excited state (n = 1) of diatomic hydrogen H2 is excited from the
ground state (n = 0) by a photon of wavelength of λ0 = 2270 nm. This wavelength
is typical of molecular vibrations – is the photon, ifrared, visible, or uv? Express the
vibrational unit of energy ℏω0 in eV. By looking at Fig. 2, give a rough estimate for the
temperature when the mean number of vibrational quanta of energy in the oscillations
of H2 becomes of order unity.

Please do not use constants like ℏ = 1.05 × 10−34 J s and kB = 1.38 × 10−23J/◦K−1,
but rather try to put it in physical terms. For instance use ℏc = 197 eV nm, and
kBT ≃ 1/44 eV at freezing 273 ◦K. A summary of constants you will need for the
course are given on the website.
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Discussion: I find T ≃ 6000oK. Indeed this is about right. At room temperatures
(T = 300 ◦K) diatomic molecules translate and rotate but do not vibrate significantly.
And so1, ⟨ϵ⟩ = 5

2
kT and C1ml

p = 7
2
R as seen in the figure below for the specific heat of

H2. At higher temperatures (at around 1000oK) they begin to vibrate, and the 5
2
kT

estimate for the molecule’s energy is no longer valid. Much above this temperature the
molecule begins to break apart as the number of vibrational quanta gets too large (the
dashed line). The following figure shows the specific heat of H2 gas. As we will discuss
fully later, the increase increase starting at around 1000oK reflects the fact vibrational
degrees of freedom becoming “active”, i.e. this means that the average n is becoming
significantly larger than zero.

1You should be able to explain the rest of this sentence. Ask me or look in the course notes if you can’t!
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Problem 4. Working with the speed distribution

Consider the Maxwell speed distribution, dPv = P (v)dv.

(a) In three dimensions, evaluate the most probable speed v∗. You should find v∗ =
(2kT/m)1/2.

(b) Determine the normalized speed distributions dPv = P (v)dv in two spatial dimen-
sions, and sketch it. Then repeat part (a) in two dimensions. You should find
v∗ = (kT/m)1/2.

Hint: Go through the derivation of the velocity distribution dPvx,vy ,vz in three dimen-
sions and generalize it to two dimensions. Then go through the steps to get from the
velocity distribution to the speed distribution dPv and generalize these steps to two
dimensions.

(c) Return to three dimensions, determine the probability of having v < v∗. Follow the
following steps:

(i) Write down the appropriate integral.

(ii) Change variables to an appropriate dimensionless speed u, writing the probability
as a dimensionless integral to be done numerically.

(iii) Write a short program (in any language) to evaluate the dimensionless integral,
by (for example) dividing up the interval into 200 bins, and evaluates the integral
with Riemann sums. You should find

P ≃ 0.428 (21)
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Problem 5. Distribution of Debroglie Wavelengths

(a) Show that ∫ ∞

−∞
dxf(x) =

∫ ∞

−∞
du f(−u) (22)

with u = −x.

(b) Consider the de Broglie wavelength λ ≡ h/p. Recall that we defined a typical thermal
de Broglie wavelength of a non-relativistic particle as2

λth ≡ h√
2πmkT

, (23)

with the
√
2π business a matter of convention.

(i) Ignoring all numerical factors, explain qualitatively why a typical de Broglie wave-
length is of order λ ∼ h/

√
mkT . Give a similar parametric estimate3 for the typ-

ical thermal wavelength of a gas of photons at temperature T? Note the energy
of a photon is related to its momentum, ϵ ≡ c p.

(ii) Evaluate λth defined in Eq. (23) numerically for He gas at room temperature
T = 300◦K, and show that

λth = 0.50 Å

(
4mp

m

)1/2(
300◦K

T

)1/2

(24)

where mp is the proton mass. Use the scaling in Eq. (24) to evalute λth for Ne at
100 ◦K

As always try to use interpretable constants that you can remember and avoid using
things like ℏ = 1.05× 10−34 J s and kB = 1.38× 10−23J/◦K−1.

(c) The particles in the gas have a range of momenta and velocities, and hence a range of
de Broglie wavelengths. By a change of variables, show that the probability to have a
particle with de Broglie wavelength between λ and λ+ dλ is

dP =
1

λth

(
λth

λ

)4

e−π(λth/λ)
2

4πdλ . (25)

The figure below shows the probability density P (λ) (i.e. the formula above without
the dλ). From the figure, determine graphically the ratio between the most probable de
Broglie wavelength and λth. Also make a rough graphical estimate for the ratio between
mean wavelength and λth, and the ratio between the standard deviation

√
⟨δλ2⟩ and

λth. Hopefully the meaning and utility of “typical” is becoming clear.

2Our textbook uses the word “quantum length”, ℓQ ≡ λth for λth.
3By a “parametric estimate” we mean an estimate that shows how a typical λ depends on the parameters

of the problem, h, m, T , and kB in this case, and not an actual number. I will use “numerical estimate”
when I want an actual number. In the non-relativistic case we made a parametric estimate that the typical
wavelength is of order, λ ∼ h/

√
mkBT . I want something similar here λtyp ∼ some function of T, h, c, kB .
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Figure 3: Probability density P (λ) ≡ dP/dλ times a constant λth. Note that λthP (λ) =
λthdP/dλ is the probability per dλ/λth. The integral under the curve shown above is unity.
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