
Problem 1. Probability distribution of a Quantum Harmonic
Oscillator

Consider a quantum harmonic oscillator in one dimension interacting with a thermal envi-
ronment. This could be, for example, a single atom attached via a spring-like bond to a
large stationary molecule. The vibrational frequency of the oscillator is ω0 =

√
ksp/m.

Recall that the energy levels of a quantum harmonic oscillator are

ϵn =
(
n+ 1

2

)
ℏω0 (1)

with n = 0, 1, 2, . . .∞. Here ℏω0 is one discrete unit of quantized vibrational energy. The
integer n is known as the vibrational quantum number – the larger is n, the larger is the
energy (in units of ℏω0), and the more the atom is vibrating. For large n the energy is nearly
continuous and the motion can be treated classically. A plot of the energy levels and the
wave-functions are shown in Fig. 1.

Since only differences in energies are physically important, we can shift what we call
“zero energy” downward by 1

2
ℏω0 and write the energy levels as

ϵn = nℏω0 (2)

The probability to find the oscillator in the n-th vibrational state is

Pn =
1

Z
e−ϵn/kT =

1

Z
e−nℏω0/kT (3)
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Figure 1: Energy levels ϵn ≡ En = (n+ 1
2
)ℏω0 and wave functions for the first six levels of

the quantum harmonic oscillator.
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Figure 2: Probability for the oscillator to have n quanta of vibrational energy ℏω0 for different
values ℏω0/kT .

where Z is a normalizing constant. Z is known as the partition function in English, and the
letter Z is short for Zustandsumme in German (meaning “sum over states”).

(a) By normalizing the probability Pn, show that Z =
∑∞

n=0 e
−nβℏω0 . I find the German

name descriptive, because, as you see, it is a “sum over states”.

(b) Noting that e−nℏω0/kT = un with u = e−ℏω0/kT , evaluate the sum, and determine the
explicit form for Z and Pn. A plot of Pn for a variety of ℏω0 is shown in Fig. 2. Describe
qualitatively what this plot is telling you physically. For each of the three curves in
Fig. 2, give a rough graphical estimate for the mean vibrational quantum number.

You should find
Pn = e−nℏω0/kT (1− e−ℏω0/kT ) (4)

(c) The first vibrational excited state (n = 1) of diatomic hydrogen H2 is excited from the
ground state (n = 0) by a photon of wavelength of λ0 = 2270 nm. This wavelength
is typical of molecular vibrations – is the photon, ifrared, visible, or uv? Express the
vibrational unit of energy ℏω0 in eV. By looking at Fig. 2, give a rough estimate for the
temperature when the mean number of vibrational quanta of energy in the oscillations
of H2 becomes of order unity.

Please do not use constants like ℏ = 1.05 × 10−34 J s and kB = 1.38 × 10−23J/◦K−1,
but rather try to put it in physical terms. For instance use ℏc = 197 eV nm, and
kBT ≃ 1/44 eV at freezing 273 ◦K. A summary of constants you will need for the
course are given on the website.
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Discussion: I find T ≃ 6000oK. Indeed this is about right. At room temperatures
(T = 300 ◦K) diatomic molecules translate and rotate but do not vibrate significantly.
And so1, ⟨ϵ⟩ = 5

2
kT and C1ml

p = 7
2
R as seen in the figure below for the specific heat of

H2. At higher temperatures (at around 1000oK) they begin to vibrate, and the 5
2
kT

estimate for the molecule’s energy is no longer valid. Much above this temperature the
molecule begins to break apart as the number of vibrational quanta gets too large (the
dashed line). The following figure shows the specific heat of H2 gas. As we will discuss
fully later, the increase increase starting at around 1000oK reflects the fact vibrational
degrees of freedom becoming “active”, i.e. this means that the average n is becoming
significantly larger than zero.

1You should be able to explain the rest of this sentence. Ask me or look in the course notes if you can’t!
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Problem 2. Paramagnets from the canonial ensemble

A primer/reminder on magnets and magnetic materials

Basic magnetism we need in this course: If I have a coil of wire carrying a current, it
has a magnetic dipole moment of2:

µ⃗ ≡ µ0IA⃗ , (5)

where |A⃗| is the area of the loop. The direction of the area vector is normal to the face of
the loop, according to the right hand rule. You can think of a current carrying loop as small
magnet (or compass needle) with north pole and south pole. µ⃗ is aligned with the north
pole of the magnet and its magnitude gives the strength of the magnet.

<latexit sha1_base64="rMRt62UE/8ibZWP4PEuG0MkvbB0=">AAACCXicbVDLSsNAFL3xWeur6tLNYBFclUSkdmfRjcsK9gFtKJPJpB06k4SZSaGEfoErt/oV7sStX+FHCH6Ck7QL23pg4HDOvZw7x4s5U9q2v6y19Y3Nre3CTnF3b//gsHR03FJRIgltkohHsuNhRTkLaVMzzWknlhQLj9O2N7rL/PaYSsWi8FFPYuoKPAhZwAjWRmr3xpSkt9N+qWxX7BxolThzUr75gRyNfum750ckETTUhGOluo4dazfFUjPC6bTYSxSNMRnhAe0aGmJBlZvm507RuVF8FETSvFCjXP27kWKh1ER4ZlJgPVTLXib+53UTHdTclIVxomlIZkFBwpGOUPZ35DNJieYTQzCRzNyKyBBLTLRpaCHFE2YbeRH3s5Si6cdZbmOVtC4rTrVSfbgq12uzoqAAp3AGF+DANdThHhrQBAIjeIYXeLWerDfr3fqYja5Z850TWID1+QshCptc</latexit>

~B

<latexit sha1_base64="ezGKo4yge8u+eIHD5LJ3L8EWxs8=">AAACC3icbVDLSsNAFL3xWeur6tLNYBFclUSkdmfBjcsK9iFNKJPJtB06k4SZSaGEfoIrt/oV7sStH+FHCH6Ck7QL23pg4HDOvZw7x485U9q2v6y19Y3Nre3CTnF3b//gsHR03FJRIgltkohHsuNjRTkLaVMzzWknlhQLn9O2P7rN/PaYSsWi8EFPYuoJPAhZnxGsjfTojilJXZFMe6WyXbFzoFXizEn55gdyNHqlbzeISCJoqAnHSnUdO9ZeiqVmhNNp0U0UjTEZ4QHtGhpiQZWX5gdP0blRAtSPpHmhRrn6dyPFQqmJ8M2kwHqolr1M/M/rJrpf81IWxommIZkF9ROOdISy36OASUo0nxiCiWTmVkSGWGKiTUcLKb4w28iPeJClFE0/znIbq6R1WXGqler9VblemxUFBTiFM7gAB66hDnfQgCYQEPAML/BqPVlv1rv1MRtds+Y7J7AA6/MXCg+cbA==</latexit>

~µ

N

S

<latexit sha1_base64="DrF0QB9TDLCFZfseC2oNwEnCtqI=">AAACCHicbVDLSgMxFL1TX7W+qi7dBIvgqsyI1O4suHFZwT6gLSWTpm1sMjMkd4Qy9AdcudWvcCdu/Qs/QvATzLRd2NYDgcM593Jujh9JYdB1v5zM2vrG5lZ2O7ezu7d/kD88qpsw1ozXWChD3fSp4VIEvIYCJW9GmlPlS97wRzep33jk2ogwuMdxxDuKDgLRF4yileptHHKk3XzBLbpTkFXizUnh+gemqHbz3+1eyGLFA2SSGtPy3Ag7CdUomOSTXDs2PKJsRAe8ZWlAFTedZHrthJxZpUf6obYvQDJV/24kVBkzVr6dVBSHZtlLxf+8Voz9cicRQRQjD9gsqB9LgiFJv056QnOGcmwJZVrYWwkbUk0Z2oIWUnxlt4kfyl6akrP9eMttrJL6RdErFUt3l4VKeVYUZOEETuEcPLiCCtxCFWrA4AGe4QVenSfnzXl3PmajGWe+cwwLcD5/AVq7mvA=</latexit>

✓

<latexit sha1_base64="r82gw7AifxvE+jsGyU7/xPlhyc4=">AAACA3icbVDLSsNAFL3xWeur6tLNYBFclUSkdmfBje5asA9oQ5lMJu3QySTMTIQSunTlVr/Cnbj1Q/wIwU9wknZhWw8MHM65l3PneDFnStv2l7W2vrG5tV3YKe7u7R8clo6O2ypKJKEtEvFIdj2sKGeCtjTTnHZjSXHocdrxxreZ33mkUrFIPOhJTN0QDwULGMHaSM37QalsV+wcaJU4c1K++YEcjUHpu+9HJAmp0IRjpXqOHWs3xVIzwum02E8UjTEZ4yHtGSpwSJWb5odO0blRfBRE0jyhUa7+3UhxqNQk9MxkiPVILXuZ+J/XS3RQc1Mm4kRTQWZBQcKRjlD2a+QzSYnmE0MwkczcisgIS0y06WYhxQvNNvIi7mcpRdOPs9zGKmlfVpxqpdq8Ktdrs6KgAKdwBhfgwDXU4Q4a0AICFJ7hBV6tJ+vNerc+ZqNr1nznBBZgff4CGueYlQ==</latexit>

I

Figure 3: An explanation of magnetic moments.

When this coil is placed into a magnetic field B⃗, the magnetic moment (or compass
needle) wants to align with the magnetic field. This is due to the net torque on the current
carrying wire, ultimately produced by the magnetic forces on the wire, i.e. F = IℓB. The
potential energy of the current carrying loop is3

Udip = −µ⃗ · B⃗ = −µB cos θ , (6)

2µ0 is the vacuum permeability (or magnetic constant), µ0 = 4π × 10−7H/m, and is not related to the
magnetic dipole moment.

3We use Udip for the potential energy of one magnetic dipole moment, e.g. from one atom. U is reserved
for the internal energy of the entire paramagnet, i.e. N atoms (see below).
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where the angle θ is between the magnetic dipole moment and the magnetic field (see below).

(a) Qualitatively, why is there a minus is in this equation? Using Fig. 3 as a guide, draw
a coil of wire with the lowest potential energy and highest potential energy.

Paramagnets (lots of little magnets): In a paramagnetic substance, you should have a
picture where each atom in the substance, can be treated as a tiny coil of wire with magnetic
moment µ⃗. The substance as a whole will not be magnetized, because the magnetic moments
all point in all random directions, and cancel each other out, see Fig. 4(a). In math, the

total magnetization M⃗ , which is a sum of the magnetic moments, is approximately zero4

M⃗ =
∑

i

µ⃗i ≃ 0 . (7)

This sum is over all the atoms with µi being the magnetic moment of the i-th atom. When a
strong magnetic field is applied, as Fig. 4(b), there is a preference for the atoms to align with
the magnetic field, and the magnetization of the substance will be non-zero, i.e. there is a
net north pole and south pole from the sum of atoms. This magnetization of the substance
can easily be measured, heuristically by bring a compass needle close to the substance. In
general the system the system will be between (a) and (b), i.e. partially aligned.

198 Rods, bubbles, and magnets

very high temperature, the magnetic moments all point in random direc-
tions and the net magnetization is zero (see Fig. 17.7(a)). The thermal
energy kBT is so large that all states are equally populated, irrespective
of whether or not the state is energetically favourable. If the magnetic
moments have angular momentum quantum number J = 1

2 they can
only point parallel or antiparallel to the magnetic field: hence there are
Ω = 2N ways of arranging up and down magnetic moments. Hence the
magnetic contribution to the entropy, S, is

S = kB ln Ω = NkB ln 2. (17.39)

In the general case of J > 1
2 , Ω = (2J + 1)N and the entropy is

S = NkB ln(2J + 1). (17.40)

At lower temperature, the entropy of the paramagnetic salt must reduce
as only the lowest energy levels are occupied, corresponding to the aver-
age alignment of the magnetic moments with the applied field increasing.
At very low temperature, all the magnetic moments will align with the
magnetic field to minimize their energy (see Fig. 17.7(b)). In this case
there is only one way of arranging the system (with all spins aligned) so
Ω = 1 and S = 0.

Fig. 17.7 (a) At high temperature, the
spins in a paramagnet are in random
directions because the thermal energy
kBT is much larger than the magnetic
energy mB. This state has high en-
tropy. (b) At low temperature, the
spins become aligned with the field be-
cause the thermal energy kBT is much
smaller than the magnetic energy mB.
This state has low entropy.

The procedure for magnetically cooling a sample is as follows. The
paramagnet is first cooled to a low starting temperature using liquid
helium. The magnetic cooling then proceeds via two steps (see also
Fig. 17.8).

The first step is isothermal magnetization. The energy of a para-
magnet is reduced by alignment of the moments parallel to a magnetic
field. At a given temperature the alignment of the moments may there-
fore be enhanced by increasing the strength of an applied magnetic field.
This is performed isothermally (see Fig. 17.8, step a → b) by having the
sample thermally connected to a bath of liquid helium (the boiling point
of helium at atmospheric pressure is 4.2 K), or perhaps with the liquid
helium bath at reduced pressure so that the temperature can be less than
4.2 K. The temperature of the sample does not change and the helium
bath absorbs the heat liberated by the sample as its energy and entropy
decrease. The thermal connection is usually provided by low-pressure
helium gas in the sample chamber, which conducts heat between the
sample and the chamber walls, the chamber itself sitting inside the he-
lium bath. (The gas is often called “exchange” gas because it allows the
sample and the bath to exchange heat.)

The second step is to thermally isolate the sample from the helium
bath (by pumping away the exchange gas). The magnetic field is then
slowly reduced to zero, slowly so that the process is quasistatic and the
entropy is constant. This step is called adiabatic demagnetization
(see Fig. 17.8, step b → c) and it reduces the temperature of the system.
During adiabatic demagnetization the entropy of the sample remains
constant; the entropy of the magnetic moments increases (because the
moments randomize as the field is turned down) and this is precisely

Weak Magnetic  Field  and High Temperature 

Strong Magnetic Field and Low Temperature 

The system is in between these limits, 
and the arrows are partly oriented.

⃗M ≃ 0

⃗M ≃ strong

Figure 4: An explanation paramagnets.

4A paramagnetic substance is different from your kitchen magnet. In the kitchen magnet the magnetic
moments remain aligned even without the magnetic field.

5



At high temperatures the atoms are more likely to point in random directions and the
magnetization is small (Fig. 4(a)). Similarly, when the magnetic field is weak, the magne-
tization is small, since there is nothing to align the moments. Our goal in this course is to
calculate how the magnetization depends on the temperature and applied magnetic field, i.e.
to find

M(T,B) , (8)

which measures the degree of partial alignment in the system. At small magnetic fields we
can make a Taylor series expansion, noting that at zero magnetic field we must have no
magnetization, and thus

M ≃ ∂M

∂B
B ≡ χ(T )B . (9)

Here we defined the “susceptibility”

χ(T ) ≡ ∂M

∂B
, (10)

which records how much magnetization you get per magnetic field.
Since the magnetization also vanishes at high temperature, one would expect that at high

temperature

χ(T ) ∝ 1

T
, (11)

This is known as the Curie Law and is seen in most paramagnetic materials.

(b) Is the magnetization as defined here an intensive or extensive quantity? Explain.

The First Law for Magnets:

If the magnetic field is increased and I do work, then the potential energy of each atom
is increased (from Eq. (6))

dUdip = −µ⃗ · dB⃗ , (12)

Assuming that no heat flows into or out of the magnet (adiabatically), we can sum over all
of the atoms, and the total change in the energy U of the magnet is

dUadiab = −M⃗(T,B) · dB⃗ . (13)

In general, heat will flow in and out of the magnet and we have then

dU = dQin − M⃗(T,B) · dB⃗ , (14)

which is
dU = dQin − pdV . (15)

To summarize the work done on the system by increasing the magnetic field by dB is

dWin = −M⃗ · dB⃗ . (16)
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Problem:

In a model of a paramagnet, there are N independent atoms. Each atom can be in one
of two spin states: “up” or “down” (see below). We use N↑ to notate the number of up spins
and N↓ for down spins (see Fig. 5).

The magnetic moment of each atom is proportional to its spin and has magnitude µ.
Thus the magnetic moment the i-th atom is µ⃗i = ±µ, with the sign indicating wether the
magnetic moment points up or down. The magnetization of the magnet, which is a sum of
the magnetic moments of the atoms, is thus proportional to the difference in up versus down
spins, M ≡ µ(N↑ −N↓).

A magnetic field, B, points in the z direction, and the spins tend to align with this field.
The energy of an up spin is (from Eq. (6)) ϵ↑ = −µB, where µ is the atom’s magnetic
moment. On the other hand, the energy of a down spin is ϵ↓ = +µB. The reason why up
spins have lower energy than down spins, is that up spins are aligned with the magnetic
field, while the down spins are aligned opposite to the field.

!B

Figure 3.6. A two-state paramagnet, consisting of N microscopic magnetic
dipoles, each of which is either “up” or “down” at any moment. The dipoles
respond only to the influence of the external magnetic field B; they do not interact
with their neighbors (except to exchange energy). Copyright c⇤2000, Addison-
Wesley.

Figure 3.7. The energy levels of a single
dipole in an ideal two-state paramagnet are
�µB (for the “up” state) and +µB (for the
“down” state). Copyright c⇤2000, Addison-
Wesley.

“Up”

“Down”+µB

−µB

0

Energy

Figure 5: (a) A visualization of the paramagnet (Schroeder). (b) The energy levels of a
paramagnet (Schroeder).

(c) The hyperbolic cosine, sine, and tangent are defined by

cosh(x) ≡(ex + e−x)/2 (17)

sinh(x) ≡(ex − e−x)/2 (18)

tanh(x) ≡ sinh(x)

cosh(x)
=

1− e−2x

1 + e−2x
(19)
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and arise frequently in stat mech and quantum mechanics. Sketch these functions and
show that the Taylor series expansion of tanh(x) is tanh(x) ≃ x− x3/3.

(d) Use the canonical ensemble to show that the magnetization can be written

M = Nµ tanh(µB/kT ) , (20)

and that the energy is
U = −NµB tanh(µB/kT ) . (21)

Using the Taylor expansion of the previous part show that at small magnetic fields the
magnetization is proportional to the applied magnetic field

M ≃ χ(T )B with a proportionality constant χ(T ) ≡ Nµ2

kT
∝ 1

T
, (22)

and that
U ≃ −χ(T )B2 (23)

The proportionality constant χ(T ) is known as the magnetic susceptibility. The fact
that magnetization is inversely proportional to the temperature is known as the Curie
Law. A comparison of the Curie Law and the tanh(x) form to experimental data on
the magnetization of paramagnets is shown below. Answer the following:

(i) Qualitatively why would one expect the magnetization to disappear at high tem-
peratures?

(ii) When is the Curie Law and the Taylor series expansion valid, i.e. what conditions
should be satisfied by the magnetic field and temperature for its validity? Do you
see deviations from the Curie Law in comparison with experiment in the right
place? Explain.

(e) Consider a paramagnet maintained at temperature T . The magnetic field is increased
from B = 0 up to Bmax. Using the high temperature approximations of (b) (where
M ≃ χ(T )B and U = −χB2), compute the heat flow into and or out of the system as
B is increased to Bmax.

Hint: Use the first law. You should find, Qin = −χ(T )B2
max/2 so heat flows out of the

magnet.
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M

Nµ

1/T (K−1)

0.2

tanh(µB/kT )

Curie’s law

0.4

0.6

0.8

0.1 0.2 0.3 0.4 0.5 0.6

Figure 3.12. Experimental measurements of the magnetization of the organic
free radical “DPPH” (in a 1:1 complex with benzene), taken at B = 2.06 T and
temperatures ranging from 300 K down to 2.2 K. The solid curve is the prediction
of equation 3.32 (with µ = µB), while the dashed line is the prediction of Curie’s
law for the high-temperature limit. (Because the e⌅ective number of elementary
dipoles in this experiment was uncertain by a few percent, the vertical scale of
the theoretical graphs has been adjusted to obtain the best fit.) Adapted from P.
Grobet, L. Van Gerven, and A. Van den Bosch, Journal of Chemical Physics 68,
5225 (1978). Copyright c⇤2000, Addison-Wesley.
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Problem 3. Paramagnet from the micro-canonical ensemble

This problem is a continuation of the previous and follows the same setup and notation. In
this part the energy difference between spin down energy and the spin up energy is written,
∆ ≡ ϵ↓− ϵ↑ = 2µB . The number of excited atoms (spin down) per site is written n ≡ N↓/N
.

(a) Determine the state of lowest possible energy (the ground state), and show that the
energy of this state is −µBN . Define the excitation energy E = E− (−NµB), i.e. the
energy above the ground state energy. Show that

E
N

= n∆ (24)

where n = N↓/N is the number of excited atoms.

(b) By directly counting the states Ω(N↓, N↑) show that the entropy as a function of energy
is

S(E) = NkB [−(1− n) log(1− n)− n log n] (25)

(c) Using Eq. (25) show that the temperature of the system with a given E is related to
the fraction of atoms that are excited (down arrows)

∆

kT
= ln

(
1− n

n

)
. (26)

Show that

n =
e−∆/kT

1 + e−∆/kT
, (27)

as can be found with the canonical approach.

(d) How is n related to the magnetization? Use this relation and the n of part (b) to find
the magnetization. Does your result for the magnetization agree with the previous
problem?
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Problem 4. Distribution of Debroglie Wavelengths

(a) (Optional, but do it for yourself!) Show that

∫ ∞

−∞
dxf(x) =

∫ ∞

−∞
du f(−u) (28)

with u = −x.

(b) Consider the de Broglie wavelength λ ≡ h/p. Recall that we defined a typical thermal
de Broglie wavelength of a non-relativistic particle as5

λth ≡ h√
2πmkT

, (29)

with the
√
2π business a matter of convention.

(i) Ignoring all numerical factors, explain qualitatively why a typical de Broglie wave-
length is of order λ ∼ h/

√
mkT .

(ii) Evaluate λth defined in Eq. (29) numerically for He gas at room temperature
T = 300◦K, and show that

λth = 0.50 Å

(
4mp

m

)1/2(
300◦K

T

)1/2

(30)

where mp is the proton mass. Use the scaling in Eq. (30) to evalute λth for Ne at
100 ◦K

As always try to use interpretable constants that you can remember and avoid using
things like ℏ = 1.05× 10−34 J s and kB = 1.38× 10−23J/◦K−1.

(c) The particles in the gas have a range of momenta and velocities, and hence a range of
de Broglie wavelengths. By a change of variables, show that the probability to have a
particle with de Broglie wavelength between λ and λ+ dλ is

dP =
1

λth

(
λth

λ

)4

e−π(λth/λ)
2

4πdλ . (31)

The figure below shows the probability density P (λ) (i.e. the formula above without
the dλ). From the figure, determine graphically the ratio between the most probable de
Broglie wavelength and λth. Also make a rough graphical estimate for the ratio between
mean wavelength and λth, and the ratio between the standard deviation

√
⟨δλ2⟩ and

λth. Hopefully the meaning and utility of “typical” is becoming clear.

5Our textbook uses the word “quantum length”, ℓQ ≡ λth for λth.
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Figure 6: Probability density P (λ) ≡ dP/dλ times a constant λth. Note that λthP (λ) =
λthdP/dλ is the probability per dλ/λth. The integral under the curve shown above is unity.
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Problem 5. Probabilities for escaping particles

66 Molecular effusion

7.2 Effusion

Consider a container of gas with a small hole of area A in the side.
Gas will leak (i.e., effuse) out of the hole (see Fig. 7.1). The hole is
small, so that the equilibrium of gas in the container is not disturbed.
The number of molecules escaping per unit time is just the number of
molecules hitting the hole area in the closed box per second, so is given
by ΦA per second, where Φ is the molecular flux. This is the effusion
rate.

Fig. 7.1 A gas effuses from a small hole
in its container. Example 7.4

In the Knudsen method of measuring vapour pressure p from a liquid
containing molecules of mass m at temperature T , the liquid is placed in
the bottom of a container that has a small hole of area A at the top (see
Fig. 7.2). The container is placed on a weighing balance and its weight
Mg is measured as a function of time. In equilibrium, the effusion rate
is

ΦA =
pA√

2πmkBT
, (7.11)

so that the rate of change of mass, dM/dt is given by −mΦA. Hence

p =

√
2πkBT

m

1

A

∣∣∣∣
dM

dt

∣∣∣∣ . (7.12)

Fig. 7.2 The Knudsen method.

Fig. 7.3 The distribution function for
molecular speeds (Maxwell–Boltzmann
distribution) in a gas is proportional to

v2 e−mv2/2kBT (solid line) but the gas
effusing from a small hole has a distri-
bution function that is proportional to

v3 e−mv2/2kBT (dashed line). The dis-
tinction between the two situations oc-
curs when counting the molecules cross-
ing a fixed plane during some interval
of time.

Effusion preferentially selects faster molecules. Therefore the speed
distribution of molecules effusing through the hole is not Maxwellian.
This result seems paradoxical at first glance: aren’t the molecules emerg-
ing from the box the same ones that were inside beforehand? How can
their distribution be different?

The reason is that the faster molecules inside the box travel more
quickly and have a greater probability of reaching the hole than their
slower cousins.1 This can be expressed mathematically by noticing that
the number of molecules hitting a wall (or a hole) is given by eqn 6.13
and this has an extra factor of v in it. Thus the distribution of molecules
effusing through the hole in some interval of time is proportional to

v3 e−mv2/2kBT . (7.13)

Note the extra factor of v in this expression compared with the usual
Maxwell–Boltzmann distribution in eqn 5.10 (see Fig. 7.3). The molecules

1An analogy may help here: the foreign tourists who visit your country are not
completely representative of the nation from which they have come; this is because
they are likely to be at least a little more adventurous than their average countrymen
and countrywomen by the very fact that they have actually stepped out of their own
borders.

detector
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In class we showed the number of particles per area per second escaping through a hole in
the container (see above) with speeds between (v, v + dv), and angles between (θ, θ + dθ)
and (ϕ, ϕ+ dϕ) is

dΦ = nP (v) v cos θ dv
dΩ

4π
. (32)

Here dΩ = sin θdθdϕ is the differential solid angle; n = N/V is the number of particles per
volume and the speed distribution is

P (v) =
( m

2πkT

)3/2

e−mv2/2kT4πv2 . (33)

Note P (v) is not explicitly needed in this problem. If we integrate over the possible velocities,
the flux per solid angle is:

dΦ

dΩ
≡ 1

sin θ

dΦ

dθdϕ
∝ cos θ . (34)

This distribution is illustrated on the next page.

(a) Show that the total number of particles escaping through a hole per (hole) area per
time per solid angle is

dΦ

dΩ
=

1

4π
n ⟨v⟩ cos θ , (35)

and that

Φ =
1

4
n ⟨v⟩ . (36)

For reference ⟨v⟩ = (8kT/πm)1/2 but you do not need to show this.
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(b) Take a gas of Helium at room temperature and pressure of one bar. There is a pinhole
in the container of radius 1mm. Consider two detectors each of collecting area 1 cm2,
both placed at angle of 30o relative to the normal (see figure). The first is placed 10 cm
away, while the second is placed 20 cm away. What is the total number of particles
emitted per second and what is the number of particles collected per second by the two
detectors? Use Fig. 7 to explain why dΦ/dΩ a more experimentally relevant quantity
for these detectors, than dΦ/dθdϕ ∝ sin θ cos θ, which carries the same information.

You should find 0.04mol/s, 1.1× 10−4mol/s, and 2.7× 10−5mol/s. Questions to con-
sider: What is the solid angle ∆Ω subtended by the two detectors? What fraction of
the sphere do they cover and how is this related to ∆Ω?

(c) Show that the average value of cos θ for these escaping particles is 2/3. What does this
number represent physically? How would Fig. 7 look like if this number was 0.99?

(d) (Optional) Your bicycle tire has a slow leak, so that it goes flat within about an
τ ≃ 1 hour after being fully inflated. Make an estimate for the radius of the hole when
the tire is fully inflated. Take any reasonable estimate for the volume of an inflated
tire, the temperature, and a typical mass for air.

Hint: show that the loss of atoms per time takes the form dN/dt = −N/τ , where
τ−1 ≡ A(kT/2πm)1/2/V is a characteristic decay time, and A = πR2.

For reasonable estimates of the volume and temperature I find a hole radius of about
R ∼ 30microns. But of course if your results could differ from mine by factors of two
or three.
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Figure 7: (a) Distribution of escaping particles over the solid angle, dΦ/dΩ ∝ cos θ. . The
red means more particles per per time per solid angle, i.e. per area on this spherical plot.
If particles were emitted uniformly over the sphere dΦ/dΩ would be constant, but dΦ/dθdϕ
would not be constant.
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