
Problem 1. Phase Space and Entropy of a MAIG

The phase space volume is a measure of the total number of possible ways for N of particles
to share (or partition) the total energy and volume. For instance one particle could have
almost all the available energy and the remaining N−1 particles could have very little. Such
configurations are unlikely since they occupy only a small portion of the available phase space
volume.

Consider a single particle in three dimensions in a box

0 < x, y, z < L (1)

The three momenta components are sharing (or partitioning) the total energy which lies
between E and E + δE, i.e.

E <
p2x
2m

+
p2y
2m

+
p2z
2m

< E + δE , (2)

The particle is free to move around in phase space but the energy must lie in this range. δE/E
is the precision in the energy and should be considered small, say 10−4. Your should realize
that this means that the momentum is confined to a spherical shell between p ≡

√
2mE and

pmax =
√

2m(E + δE).

(a) Show that the accessible phase space volume is

Vps =

∫
[E,E+δE]

d3rd3p = V

[
4π (2mE)3/2

δE

2E

]
(3)

Hint: Show that the thickness of the shell in momentum space is

δp ≡ pmax − p ≃ p
δE

2E
(4)

To count the number of configurations, divide up the phase space volume into cells of
(arbitrary) small size h = ∆x∆px, or in three dimensions cells of size1

h3 = (∆x∆y∆z) (∆px∆py∆pz) (5)

The “number of ways” for px, py, pz and to share (or partition) the available energy is
denoted by Ω(E, V ) and it is phase space volume divided by the cell size

Ω(E, V ) =
1

h3

∫
[E,E+δE]

d3rd3p (6)

=V

(
2mE

h2

)3/2

4π
δE

2E
(7)

1Classically this cell size was arbitrary. With the advent of quantum mechanics, it was realized that a
natural choice for the cell size is Plank’s constant h. But here let’s understand it from a classical perspective
first, choosing the cell size to be h somewhat arbitrarily.
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Ω(E, V ) is the number of accessible states for a single particle with energy between E and
E + δE.

The number of accessible configurations for two particles sharing the available energy
between E and E + δE is

Ω(E, V ) =
1

2!

∫
[E,E+δE]

d3r1d
3p1

h3

d3r2d
3p2

h3
. (8)

The 2! is inserted because if I simply exchange what I call particle 1 and particle 2, that is
not to be considered a new configuration.

(b) Show that for two particles in three dimensions the number of accessible configurations
is

Ω(E, V ) =V 2

(
2mE

h2

)3

π3 δE

4E
. (9)

Hint: It is helpful to recall that the area of a sphere in d dimensions is given by a
general formula

Ad =
2πd/2

Γ(d/2)
rd−1 . (10)

In class we showed that for N particles with total energy E and volume V , the total the
number of configurations and corresponding entropy of the system are given by

Ω(E, V ) =C(N)V NE3N/2 (11)

S(E, V ) = kB lnΩ =
3

2
NkB logE +NkB log V + const . (12)

In the remainder of the exercise we will keep track of the constant C(N).

(c) Show that the total number of ways for N particles to share the energy E (i.e. total
number of accessible configurations with energy between E and E + δE) is

Ω(E, V ) =
1

N !

∫
d3r1d

3p1

h3
. . .

d3rNd
3pN

h3
, (13)

=
1

N !
V N

(
2πmE

h2

)3N/2
1

Γ(3N/2)

δE

E
. (14)

N is large and is of order Avogadro’s number.

(d) Use the Stirling approximation to show that2

Ω(E, V ) ≃e5N/2

(
V

N

)N (
4πm

3h2

E

N

)3N/2

, (16)

(17)

2For large n
Γ(n) ≡ (n− 1)! ≃ n! ≃ (n/e)n (15)

Note the Stirling approximation works for n not integer, if n! is understood as Γ(n+ 1).
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and that the entropy is

S(E, V ) =NkB log

[(
V

N

)(
4πm

3h2

E

N

)3/2
]
+

5

2
NkB , (18)

=NkB

[
log

(
vN
λ3
th

)
+

5

2

]
. (19)

Here vN = V/N is the volume per particle and

λth =
h√

2πmkBT
=

h√
4πmE/(3N)

, (20)

is the typical de Broglie wavelength at temperature T . The temperature is determined
by the energy per particle for a monoatomic gas, E/N = 3

2
kBT .

Hint: The δE/E term is not exponentially large in contrast to the other terms. Thus
δE/E can be set to one via the following approximation:

e5N/2

(
δE

E

)
= e5N/2+log(δE/E) ≃ e5N/2 . (21)

Convince yourself of this step by taking δE/E = 10−6 (or whatever you like). How big
is log(δE/E) compared to 5N/2? Something is exponentially large if its logarithm is
of order Avogadro’s number.

Discussion: The result for S in Eq. (19) is known as the Sackur Tetrode equation and
is fundamental. The Sackur-Tetrode equation says that the entropy per particle S/NkB is
of order the logarithm of the accessible phase space per particle in units of h3. Roughly
speaking each particle has volume vN = V/N . The typical momentum of a particle is of
order ptyp ∼

√
mkBT . The phase space per particle is the coordinate space volume vN times

the momentum space volume ∼ p3typ and is of order

Vps ∼ vN p3typ . (22)

The entropy per particle (divided kB) is the logarithm of this phase space in units of h3 and
is of order

S

NkB
∼ log

(
vN p3typ
h3

)
∼ log

(
vN
λ3
th

)
. (23)

This logarithm is never very large (at most 10), and in practice the entropy per particle is
an order one number.

(e) Recall that “Normal Temperature and Pressure” (NTP) is a temperature of T
 ≡
298 ◦K and p
 ≡ 1 bar. Show that the entropy per particle is

S

NkB
≃ 13.1− ln(p/p
) +

5

2
ln(T/T
) +

3

2
ln(m/mH) (24)

Here mH is the mass of a hydrogen atom and 13.1 = 10.6 + 5/2. Hint: What is the
entropy of Hydrogen gas at NTP?

(i) Use the result to evaluate the entropy per particle S/NkB of Argon at 200 ◦C and
two bars of pressure? (Ans: 19.3)
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Problem 2. Entropy changes of a MAIG

Find the change in entropy of nml moles of an ideal monoatomic ideal gas in the following
processes:

(a) the temperature changes from T1 to T2 at constant pressure;

(b) the pressure changes from P1 to P2 at constant volume.

Consider the expression for the number of states in a mono-atomic ideal gas

Ω = C(N)V NE3N/2 , (25)

and the corresponding entropy

S = NkB log(V ) +
3

2
NkB log(E) + const . (26)

Recall that in an adiabatic expansion of a monoatomic ideal gas no heat enters or exits the
system and the entropy remains constant as the volume increases.

(c) (i) Using Eq. (26) show that ∆S = 0 for an adiabatic increase in volume from V1 to
V2. (Hint: How does the temperature change during an adiabatic expansion of a
mono-atomic ideal gas?)

(ii) Describe how the particles are redistributed in phase space so that the entropy
and total phase space volume remains constant during the expansion.

Ans: (a) 5
2
nmlR ln(T2/T1); (b)

3
2
nmlR ln(P2/P1).
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Problem 3. Ball in lake

In this problem we will explore examine the fundamental formula:

∆SAB =

∫ B

A

dQrev

T
≥

∫ B

A

dQ

T
. (27)

In this equation are considering a system (a ball) placed in contact with a reservoir at
temperature T with heat exchange dQ.

(a) A cool ball of iron with initial temperature T 0
B and constant specific heat C is thrown

into a large hot reservoir of water at temperature T , which may be presumed con-
stant. The subsequent equilibration between the system and reservoir is a highly
non-equilibrium and irreversible process. How much heat goes from the reservoir to
the system as the reservoir and the system equilibrate?

(b) You can compute the change in entropy of the ball ∆S in the non-equilibrium process
by replacing the non-equilibrium process (which actually happened) with an imagined
equilibrium process. This replacement is possible because the entropy change depends
only on the starting and stopping points and not on the path.

In the imagined process the temperature of the ball TB is slowly raised from T 0
B to T

by a set of small incremental heat transfers dQrev = CdTB with a sequence of imagined
reservoirs at temperatures between T 0

B and T .

(i) Find ∆S.

(ii) Sketch ∆S and Q/T as a function of

∆T

T
≡ T − T 0

B

T
.

on the same graph for ∆T/T ∈ [0, 1]. Does your graph corroborate the inequality
∆S ≥ Q/T?

(iii) Make a Taylor series of ∆S to show that for small ∆T/T

∆S =
Q

T
+

C∆T 2

2T 2
>

Q

T
(28)
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Problem 4. Entropy change in the mixing of hot and cold gasses

Consider two mono-atomic ideal gasses, Helium and Argon, separated by a divider which
partitions a container of volume V into two equal parts. There are N1 Helium atoms on the
left of the divider, and N2 Argon atoms on the right of the divider. The Helium atoms are
initially at a temperature of T1, while the Argon atoms are initially at a temperature of T2.
After the dividing wall is removed, the two gasses mix and ultimately equilibrate.

(a) Determine the final temperature of the system.

(b) Determine the change in entropy of the system resulting from the mixing process in
two ways:

(i) Directly count the number of states at the beginning and end.

(ii) Calculate the change in entropy by identifying an equilibrium path connecting
the state at the beginning and the state at the end and using thermodynamics.
Explain how the example illustrates the formula the formula

∆S =

∫
d̄Qrev

T
>

Q

T
(29)
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