
Problem 1. Einstein Model of Solid

A solid consists of an array of atoms in a crystal structure shown below. In a simple model
(used by Einstein at the advent of quantum mechanics) each atom is assumed to oscillate
independently of every other atom1. The model has one free parameter ω0 and predicts the
general properties of specific heats of solids.

In one dimension a “solid” of N atoms consists of N independent harmonic oscillators.
The Hamiltonian of each oscillator is

H =
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2
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where m is the mass of the atom. In two dimensions each atom can oscillate in the x
direction and the y direction. Thus, the solid of N atoms consists of 2N independent
quantum oscillators. The Hamiltonian (or energy) of each atom is a sum of two harmonic
oscillators:
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Finally in three dimensions (shown below) the solid of N atoms consists of 3N independent
oscillators as shown below, and each atom can oscillate in the x, y, or z directions. The
Hamiltonian of each atom shown in Fig. 1 consists of three harmonic oscillators:
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The total Hamiltonian is a sum of the Hamiltonians of each atom.

(a) By appealing to the equi-partition theorem for a classical harmonic oscillator, argue
that the mean energy of the solid at temperature T is

E = 3NkT , (6)

if the solid is treated as 3N independent classical oscillators. Determine the specific
heat C1ml

V for one mole of substance in this case.

(b) When each the solid is treated as 3N quantum harmonic oscillators, the energy of
the solid is E = 3N ⟨ϵ⟩, where the ⟨ϵ⟩ is the average energy of the a single harmonic
oscillator. By reviewing the results of previous homework, write down the total energy
of the solid at temperature T , and record the mean vibrational quantum number n̄ of
a single oscillator.

1In reality the motions of the atoms are coupled to each other, and the oscillation pattern of the solid,
may be found by breaking it up into normal modes.
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Figure 1:

(c) The figure below shows N = 400 harmonic oscillators in equilibrium sharing the total
available energy. The numbers indicate the energy level n of each oscillator – if one
oscillator gains a unit of energy, e.g. increasing from 3 ℏω0 to 4 ℏω0, the rest of the
oscillators will have one less unit of energy to share. Estimate the temperature of the
system.After many “hops”, the system has “thermalized”

“thermalized” means that the system is equally likely to be in any of its   microstatese555

1 0 1 0 2 1 0 0 2 1 3 1 1 1 0 0 0 0 1 0
1 2 2 2 0 0 0 0 0 1 1 0 0 3 5 1 0 0 0 0
0 0 1 1 0 2 0 0 6 1 1 0 1 1 1 0 2 0 0 0
0 3 3 0 0 2 0 0 3 0 1 3 0 2 0 0 0 3 0 0
2 0 0 1 0 6 0 4 1 0 0 0 2 1 0 0 1 1 1 0
1 0 6 0 4 0 1 2 1 0 0 0 1 0 0 0 0 3 4 1
0 0 0 1 2 4 0 0 1 0 0 2 0 1 2 1 1 2 0 6
1 3 0 0 2 0 1 0 1 0 0 3 0 4 0 2 1 0 6 1
1 1 1 0 0 0 0 1 0 3 1 2 0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 3 1 0 0 0 0 0 3 0 0 2 2 1
9 1 0 1 1 0 2 1 0 1 0 0 0 3 7 3 0 2 3 0
2 2 0 0 0 0 0 1 0 1 7 1 3 1 0 1 3 0 1 0
0 5 3 0 1 2 4 8 1 0 4 0 3 0 1 0 0 0 4 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 2 3 0 2 0 0
0 1 1 0 0 2 0 4 0 1 0 4 0 1 1 1 1 8 5 1
0 0 0 0 1 0 0 0 2 0 1 0 1 1 2 0 0 1 1 1
3 0 0 0 4 0 0 1 0 1 2 0 0 1 2 0 2 0 1 0
0 0 1 2 1 0 0 0 0 0 1 0 0 0 2 0 1 1 0 0
1 0 1 0 0 0 1 0 3 1 0 0 0 0 0 2 9 0 0 5
0 0 1 2 3 0 1 2 0 2 4 0 0 0 1 2 0 0 0 1

Entropy and the microcanonical ensemble 7

We will answer the following:
What is the temperature of this thermalzed 

system?
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(d) Show that the specific heat CV for one mole of solid is2

C1ml
V = 3R

(βℏω0)
2 exp(−βℏω0)

(1− exp(−βℏω0))2
. (8)

Make a Taylor series expansion of C1ml
V at high temperature, including the just leading

term. What is the specific heat in the ultimate high temperature limit? Your result
should be consistent with part (a). Why?

(e) I downloaded the specific heat of silver and made a graph of the Einstein prediction
for C1ml

V . The Einstein model has a free parameter ℏω0. The graph below shows the
prediction for ℏω0 = 2E0, E0, E0/2 with E0 = 0.013 eV. The graph I get for silver is
shown below (top) as well as the CV for other substances (bottom).

(i) Diamond is known to be a very hard substance. Loosely explain how this fact is
reflected in the data on CV presented in the figure below? Hint : What does the
graph of CV for different substances tell you about the relative strengths of the
spring constants of the material?

2When computing CV , it may be helpful to recognize that

T
∂

∂T
= −β

∂

∂β
(7)
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Specific Heats of Solids: (Taken from Zemansky and Dittman)

The general shape of these curves agrees with the Einstein Model!
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Figure 2: Specific heats of solids: (a) The Einstein Model with ℏω0 treated as a parameter
compared to the specific heat of silver. The graph approaches 3R at high temperature. (b)
The specific heat CV in units of R of various solids versus temperature. The specific heat
approaches 3R at high temperature
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Problem 2. An engine cycle

One mole of an ideal monoatomic gas operates in an engine cycle shown below. Here the
givens are the temperatures, Ta = 400K and Tc = 250K, and the pressure, Pc = 1bar.
These values are recorded in the table below.

a

bc

Volume

Pr
es
su
re

adiabatic

Using the ideal gas law PV = nRT , it is straightforward to show that the volumes at a and
c are Va = Vc = 20.8 L, and that the pressure at a is Pa = 1.6 bar, as recorded in the table
below.

(a) Find the volume and temperature at b, completing the table shown below.

state pressure volume temperature
a 1.6 bar 20.8 L 400 K
b 1.0 bar ? ?
c 1.0 bar 20.8 L 250K

(b) Find the work done by the gas per cycle.

(c) Find the efficiency of the engine.
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Solution

(a) We have
paV

γ
a = pbV

γ
b with γ = Cp/Cv = 5/3 for a MAIG (9)

We used the ideal gas relation C1ml
p = C1ml

V +R. Solving

Vb = Va

(
pa
pb

)1/γ

= 1.0 L

(
1.6 b

1.0 b

)1/γ

= 27.6 L (10)

The temperature follows

PbVb = RTb Tb =
PbVb

R
=

1.0 b · 27.6 L
8.32J/◦K

= 331 ◦K (11)

We used that 1 b · L = 100 J.

(b) For the leg a → b the work by the system is denoted Wba; The heat input to the system
is Qba = 0 ; the change in energy is ∆Uba = Ub − Ua. For a gas with constant specific
heat

U = CV T (12)

For a monoatomic gas, the specific heat is CV = 3
2
Nk, or for one mole:

C1ml
V =

3

2
R . (13)

Thus, by the first law

∆Uba =Qba −Wba ⇒ Uba = −Wba (14)

and so
−Wba = ∆Uba = CV (Tb − Ta) = −855 J (15)

We used C1ml
V = 3/2R.

For the c → b leg, we procede similarly using

W =

∫ b

c

pdV . (16)

Thus

∆Ucb =CV (Tc − Tb) = −1016 J (17)

Wcb = p(Vc − Vb) =− 678 J (18)

We also have from the first law that the heat inputtted is

Qcb = ∆Ucb +Wcb = −1694 J . (19)
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Finally for the last leg c → a we have Wac = 0, and thus since by the first law
dU = dQ− dWout.

∆Uac = Qac (20)

Using
∆Uac = CV (Ta − Tc) = 1872 J (21)

we find Qac = 1872 J

Now the efficiency is easily worked out

η =
Wnet

Qin

=
Wba +Wcb

Qac

=
855− 678

1872
≃ 0.095 (22)
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Problem 3. Isothermal Atmosphere

Consider a gas at temperature T near the earth’s surface. The potential energy due to
gravity is

U = mgz (23)

where z is height above the earth’s surface, z = 0. Our goal is to use partition functions to
evaluate the probality that a particle will have height z above the earth’s surface

For simplicity assume that the x, y coordinates are in a large “box” of area L2, but the
heigth z runs from zero (the earth’s surface) to infinity (outer space), i.e.

0 < x, y < L 0 < z < ∞ (24)

The spatial coordinates are r = (x, y, z) and the momentum coordinates are p = (px, py, pz)

(a) Write down the Hamiltonian of a particle and compute the (single particle) partition
function of the classical particle. You shold find

Z1 =
L2ℓ(2πmkT )3/2

h3
(25)

where ℓ ≡ kT/mg. Express Z1 using the thermal de Broglie wavelength. What are the
units of Z1 ?

(b) Determine the probability distribution

dPr,p = P (r,p)d3rd3p (26)

and show that it factorizes into probability of position P (r) times a probability of
momentum P (p).

(c) By differentiating the partition function (or better lnZ) find: (i) the mean energy ⟨ϵ⟩,
and (ii) the variance in the energy ⟨(δϵ)2⟩.

(d) Compute the mean height ⟨z⟩ in two ways:

(i) Compute the probability distribution for height z, dPz by integrating over (or
“maginalizing over”) the unobserved coordinates. Sketch this distribution and
use it to find the mean height ⟨z⟩.

(ii) Use the equipartition to find the mean kinetic energy and combine this with your
result ⟨ϵ⟩ to determine the mean potential energy, ⟨U⟩. Are your results from (i)
and (ii) consistent with each other?

(e) Make a reasonable estimate for this height in kilometers, by estimating the the typical
mass of an air molecule, and a typical temperature.

Please do not substitute, kB = 1.38 × 10−23J/◦K−1, and try not to look up numbers.
Rather puts the numbers in physical terms, and remember them. A list of useful
constants that you need for this course is maintained on the web site.
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(f) (Optional) If the gas density at z = 0 is n0, what is the density n(z) at height z?

(g) (Optional) A mechanical analysis of the forces in the the gas says that

dp(z)

dz
= −mgn(z) (27)

where p(z) is the pressure in the gas at height z. Explain briefly the physical meaning
of Eq. (27), and then show that part (e) is consistent with Eq. (27) and the ideal gas
law, pV = nmlRT provided the temperature is constant.
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Solution

(a) The Hamiltonian is the kinetic plus potential energy as a function of p and r

H(r,p) =
p2

2m
+mgz (28)

with p2 = p2x + p2y + p2z the squared magnitude of the momentum. The partition function

Z1 =

∫
d3rd3p

h3
e−p2/2mkT e−mgz/kT . (29)

The integration over the x, y spatial coordinates gives L2. The momentum integrations is
the same as for the velocity distributions discussed in class∫

dpxdpydpz e
−(px+p2y+p2z)/2mkT =

[∫
dpxe

−p2x/2mkT

]3
= (2πmkT )3/2 . (30)

The integral over z is the new bit:∫ ∞

0

dz e−mgz/kT =
kT

mg
≡ ℓ (31)

In total we have

Z1 =
1

h3
L2

(
kT

mg

)
(2πmkT )3/2 (32)

(b) We have

dPr,p =
1

Z1

e−H(r,p)/kT d3r d3p

h3
. (33)

So the normalization constant is Z1h
3, leading to

dPr,p =

(
e−p2/2mkTd3p

(2πmkT )3/2

)(mg

kT
e−mgz/kTdz

)(dx dy

L2

)
. (34)

In writing this expression we have put the factors that make up Z underneath the differentials
that they stemmed from, e.g.∫

dze−mgz/kT = ℓ dP ∝ 1

ℓ
e−mgz/kTdz . (35)

We see that the probability factorizes – it is a probability of momentum p; times a probability
of height z; times a probability of transverse coordinates x, y (which is just a constant 1/L2).

(c) We need to compute

⟨ϵ⟩ =− ∂ lnZ

∂β
(36)

〈
δϵ2
〉
=
∂ ln2 Z

∂β2
= −∂ ⟨ϵ⟩

∂β
(37)
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We only need the dependence on lnZ on β. We see that Z ∝ β−5/2:

lnZ = ln(β−5/2) + const (38)

We do not need to be explicit about the constant as we are planning to differentiate the
result. This simplification is extremely common. So,

⟨ϵ⟩ =− ∂ lnZ

∂β
=

5

2

1

β
=

5

2
kT (39)

〈
δϵ2
〉
=
∂ ln2 Z

∂β2
= −∂ ⟨ϵ⟩

∂β
=

5

2

1

β2
=

5

2
(kT )2 (40)

(d) We have

dPr,p =

(
e−p2/2md3p

(2πmkT )3/2

) (mg

kT
e−mgz/kTdz

) (dxdy

L2

)
(41)

=P (px, py, pz)d
3p× P (z)dz × P (x, y)dxdy (42)

By construction (look carefully at part (a)) each of the terms is separately normalized and the
probability factorizes. Integrating over px, py, pz, and over x, y gives unity for each integral
yielding

dPz =

∫
over x, y, px, py, pz

dPr,p =
mg

kT
e−mgz/kT =

1

ℓ
e−ℓdz (43)

with ℓ = kT/mg. Then we can calculate

⟨z⟩ =
∫ ∞

0

P (z)dz =

∫ ∞

0

1

ℓ
e−z/ℓdz × z (44)

Changing variables to u ≡ z/ℓ we find

⟨z⟩ = ℓ

∫ ∞

0

e−uduu ≡ ℓΓ(2) = ℓ (45)

An alternative way to proceed us to use that the mean kinetic energy is

⟨K⟩ =
〈
p2x + p2y + p2z

2m

〉
= 3× 1

2
kT (46)

i.e. the average of every quadratic form in the classical Hamiltonian (or energy as a function
of as a function of position and momentum) is 1

2
kT . There are three quadratic forms in the

kinetic energy. Then since the average energy is the sum of the average kinetic and average
potential energy

⟨ϵ⟩ = ⟨K +mgz⟩ = 5

2
kT (47)

we find
⟨mgz⟩ = kT (48)

Thus as found above:

⟨z⟩ = kT

mg
. (49)
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(e) First we interpret the height ℓ. The typical energy ∼ kT . A particle with this kinetic
energy on the earth’s surface will fly to a height

ℓ =
kT

mg
. (50)

So, ℓ sets the scale for the height.

Now lets evaluate this for diatomic nitrogen (Air is 70% N2). The molar mass of N2 is
28 grams = 0.028 kg . Taking R = 8.32J/◦K and T = 300 ◦K we find

ℓ =
NAkT

NAmg
=

RT

(0.028 kg)(9.8m/s2)
≃ 9.1 km (51)

(f) Clearly
n(z)

n(0)
=

P (z)

P (0)
(52)

So
n(z) = n(0)e−mgz/kT (53)

where n(z) is the number of molecules per volume

(g) Take a slab of air of area A and draw a free body diagram (see figure). Since the
forces must balance we must have

−A p(z + dz) +A p(z)−mg (Adz)n(z) = 0 . (54)

Here the first term is the pressure force pushing down on the slab; the second term is the
pressure force pushing up on the slab; the third term is the weight of the slab (its volume is
dV = A dz and there are n(z) particles of mass m per volume).

Weight:

Thus
dp

dz
= −mgn(z) (55)

This equation used no statistical mechanics – it is only mechanics.
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Now we use statistical mechanics to verify overall consistency. The pressure is given by
the ideal gas law:

p(z) =
NkT

V
= n(z)kT = n(0)e−mgz/kT kT . (56)

Differentiating we have

dp

dz
= −n(0)e−mgz/kT mg = −n(z)mg . (57)

Thus the pressure and density are consistent with the mechanics relation given in Eq. (55)
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